BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 217363)

  • 1. Effects of cholera toxin and guanosine 5'-[betagamma-imido]triphosphate on beta-adrenergic-receptor affinity.
    Fischer J; Sharp GW
    Biochem J; 1978 Nov; 176(2):505-10. PubMed ID: 217363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes.
    Lad PM; Nielsen TB; Preston MS; Rodbell M
    J Biol Chem; 1980 Feb; 255(3):988-95. PubMed ID: 6243304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides.
    Lefkowitz RJ; Mullikin D; Caron MG
    J Biol Chem; 1976 Aug; 251(15):4686-92. PubMed ID: 947904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes.
    Stadel JM; Lefkowitz RJ
    J Cyclic Nucleotide Res; 1981; 7(6):363-74. PubMed ID: 6125532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high affinity agonist . beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes.
    Stadel JM; DeLean A; Lefkowitz RJ
    J Biol Chem; 1980 Feb; 255(4):1436-41. PubMed ID: 6243637
    [No Abstract]   [Full Text] [Related]  

  • 6. Reconstitution of turkey erythrocyte beta-adrenergic receptors into human erythrocyte acceptor membranes. Demonstration of guanine nucleotide regulation of agonist affinity.
    Jeffery DR; Charlton RR; Venter JC
    J Biol Chem; 1980 Jun; 255(11):5015-8. PubMed ID: 6246093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site.
    Cassel D; Selinger Z
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3307-11. PubMed ID: 198781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of the beta-adrenergic receptor of the frog erythrocyte.
    Caron MG; Limbird LE; Lefkowitz RJ
    Mol Cell Biochem; 1979 Dec; 28(1-3):45-66. PubMed ID: 231201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for two specific affinity states of 3H-antagonist binding to cardiac beta-adrenergic receptors and influence of Gpp(NH)p.
    Lang PH; Lemmer B
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(4):341-60. PubMed ID: 2993385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-adrenergic receptors in guinea-pig liver plasma membranes and thermal lability of [3H]dihydroalprenolol binding sites.
    Kawai Y; Graham SM; Yoshioka H; Arinze IJ
    Biochem Pharmacol; 1986 Dec; 35(24):4387-93. PubMed ID: 3024648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of adenylate cyclase by beta-adrenergic receptors: investigation of rate limiting steps by simultaneous assay of high affinity agonist binding and GDP release.
    De Lean A; Rouleau D; Lefkowitz RJ
    Life Sci; 1983 Sep; 33(10):943-54. PubMed ID: 6310288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells.
    Tallman JF; Smith CC; Henneberry RC
    Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine binding to the beta-adrenergic receptor.
    Lefkowitz RJ; Williams LT
    Proc Natl Acad Sci U S A; 1977 Feb; 74(2):515-9. PubMed ID: 15249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of local anesthetics on guanyl nucleotide modulation of the catecholamine-sensitive adenylate cyclase system and on beta-adrenergic receptors.
    Voeikov VL; Lefkowitz RJ
    Biochim Biophys Acta; 1980 May; 629(2):266-81. PubMed ID: 6248119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probe for the organization of the beta-adrenergic receptor-regulated adenylate cyclase system in turkey erythrocyte membranes by the use of a complementation assay.
    Lad PM; Nielsen TB; Rodbell M
    FEBS Lett; 1980 Dec; 122(2):179-83. PubMed ID: 6258975
    [No Abstract]   [Full Text] [Related]  

  • 17. Guanyl nucleotides participate in the beta-adrenergic stimulation of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland.
    Cote TE; Grewe CW; Kebabian JW
    Endocrinology; 1982 Mar; 110(3):805-11. PubMed ID: 7056232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of guanine nucleotides in the stimulation of thyroid adenylate cyclase by prostaglandin E1 and cholera toxin.
    Friedman Y; Lang M; Burke G
    Biochim Biophys Acta; 1981 Feb; 673(1):114-23. PubMed ID: 7470506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pharmacology of adenylate cyclase-coupled alpha- and beta-adrenergic receptors.
    Lefkowitz RJ; De Lean A; Hoffman BB; Stadel JM; Kent R; Michel T; Limbird L
    Adv Cyclic Nucleotide Res; 1981; 14():145-61. PubMed ID: 6269377
    [No Abstract]   [Full Text] [Related]  

  • 20. Visualization of the turkey erythrocyte beta-adrenergic receptor.
    Durieu-Trautmann O; Delavier-Klutchko C; Vauquelin G; Strosberg AD
    J Supramol Struct; 1980; 13(4):411-9. PubMed ID: 6112288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.