These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 217363)
1. Effects of cholera toxin and guanosine 5'-[betagamma-imido]triphosphate on beta-adrenergic-receptor affinity. Fischer J; Sharp GW Biochem J; 1978 Nov; 176(2):505-10. PubMed ID: 217363 [TBL] [Abstract][Full Text] [Related]
2. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes. Lad PM; Nielsen TB; Preston MS; Rodbell M J Biol Chem; 1980 Feb; 255(3):988-95. PubMed ID: 6243304 [TBL] [Abstract][Full Text] [Related]
3. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides. Lefkowitz RJ; Mullikin D; Caron MG J Biol Chem; 1976 Aug; 251(15):4686-92. PubMed ID: 947904 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes. Stadel JM; Lefkowitz RJ J Cyclic Nucleotide Res; 1981; 7(6):363-74. PubMed ID: 6125532 [TBL] [Abstract][Full Text] [Related]
5. A high affinity agonist . beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes. Stadel JM; DeLean A; Lefkowitz RJ J Biol Chem; 1980 Feb; 255(4):1436-41. PubMed ID: 6243637 [No Abstract] [Full Text] [Related]
6. Reconstitution of turkey erythrocyte beta-adrenergic receptors into human erythrocyte acceptor membranes. Demonstration of guanine nucleotide regulation of agonist affinity. Jeffery DR; Charlton RR; Venter JC J Biol Chem; 1980 Jun; 255(11):5015-8. PubMed ID: 6246093 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Cassel D; Selinger Z Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3307-11. PubMed ID: 198781 [TBL] [Abstract][Full Text] [Related]
8. Biochemical characterization of the beta-adrenergic receptor of the frog erythrocyte. Caron MG; Limbird LE; Lefkowitz RJ Mol Cell Biochem; 1979 Dec; 28(1-3):45-66. PubMed ID: 231201 [TBL] [Abstract][Full Text] [Related]
9. Evidence for two specific affinity states of 3H-antagonist binding to cardiac beta-adrenergic receptors and influence of Gpp(NH)p. Lang PH; Lemmer B J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(4):341-60. PubMed ID: 2993385 [TBL] [Abstract][Full Text] [Related]
10. Beta-adrenergic receptors in guinea-pig liver plasma membranes and thermal lability of [3H]dihydroalprenolol binding sites. Kawai Y; Graham SM; Yoshioka H; Arinze IJ Biochem Pharmacol; 1986 Dec; 35(24):4387-93. PubMed ID: 3024648 [TBL] [Abstract][Full Text] [Related]
11. Activation of adenylate cyclase by beta-adrenergic receptors: investigation of rate limiting steps by simultaneous assay of high affinity agonist binding and GDP release. De Lean A; Rouleau D; Lefkowitz RJ Life Sci; 1983 Sep; 33(10):943-54. PubMed ID: 6310288 [TBL] [Abstract][Full Text] [Related]
12. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells. Tallman JF; Smith CC; Henneberry RC Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639 [TBL] [Abstract][Full Text] [Related]
13. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes. Vauquelin G; Geynet P; Hanoune J; Strosberg AD Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363 [TBL] [Abstract][Full Text] [Related]
14. Catecholamine binding to the beta-adrenergic receptor. Lefkowitz RJ; Williams LT Proc Natl Acad Sci U S A; 1977 Feb; 74(2):515-9. PubMed ID: 15249 [TBL] [Abstract][Full Text] [Related]
15. Effects of local anesthetics on guanyl nucleotide modulation of the catecholamine-sensitive adenylate cyclase system and on beta-adrenergic receptors. Voeikov VL; Lefkowitz RJ Biochim Biophys Acta; 1980 May; 629(2):266-81. PubMed ID: 6248119 [TBL] [Abstract][Full Text] [Related]
16. A probe for the organization of the beta-adrenergic receptor-regulated adenylate cyclase system in turkey erythrocyte membranes by the use of a complementation assay. Lad PM; Nielsen TB; Rodbell M FEBS Lett; 1980 Dec; 122(2):179-83. PubMed ID: 6258975 [No Abstract] [Full Text] [Related]
17. Guanyl nucleotides participate in the beta-adrenergic stimulation of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland. Cote TE; Grewe CW; Kebabian JW Endocrinology; 1982 Mar; 110(3):805-11. PubMed ID: 7056232 [TBL] [Abstract][Full Text] [Related]
18. Role of guanine nucleotides in the stimulation of thyroid adenylate cyclase by prostaglandin E1 and cholera toxin. Friedman Y; Lang M; Burke G Biochim Biophys Acta; 1981 Feb; 673(1):114-23. PubMed ID: 7470506 [TBL] [Abstract][Full Text] [Related]
19. Molecular pharmacology of adenylate cyclase-coupled alpha- and beta-adrenergic receptors. Lefkowitz RJ; De Lean A; Hoffman BB; Stadel JM; Kent R; Michel T; Limbird L Adv Cyclic Nucleotide Res; 1981; 14():145-61. PubMed ID: 6269377 [No Abstract] [Full Text] [Related]