These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 2173632)
1. Comparison of in vitro hydrolysis, subcutaneous and intramedullary implantation to evaluate the strength retention of absorbable osteosynthesis implants. Vasenius J; Vainionpää S; Vihtonen K; Mäkelä A; Rokkanen P; Mero M; Törmälä P Biomaterials; 1990 Sep; 11(7):501-4. PubMed ID: 2173632 [TBL] [Abstract][Full Text] [Related]
2. Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Vainionpää S; Kilpikari J; Laiho J; Helevirta P; Rokkanen P; Törmälä P Biomaterials; 1987 Jan; 8(1):46-8. PubMed ID: 3828445 [TBL] [Abstract][Full Text] [Related]
3. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study. Törmälä P; Vasenius J; Vainionpää S; Laiho J; Pohjonen T; Rokkanen P J Biomed Mater Res; 1991 Jan; 25(1):1-22. PubMed ID: 1850429 [TBL] [Abstract][Full Text] [Related]
4. Absorbable intramedullary implants for hand fractures. Animal experiments and clinical trial. Kumta SM; Spinner R; Leung PC J Bone Joint Surg Br; 1992 Jul; 74(4):563-6. PubMed ID: 1320621 [TBL] [Abstract][Full Text] [Related]
5. Strength retention of self-reinforced polyglycolide membrane: an experimental study. Ashammakhi N; Mäkelä EA; Vihtonen K; Rokkanen P; Kuisma H; Törmälä P Biomaterials; 1995 Jan; 16(2):135-8. PubMed ID: 7734647 [TBL] [Abstract][Full Text] [Related]
6. Metacarpal fracture fixation with absorbable polyglycolide rods and stainless steel K wires: a biomechanical comparison. Maruyama T; Saha S; Mongiano DO; Mudge K J Biomed Mater Res; 1996; 33(1):9-12. PubMed ID: 8734068 [TBL] [Abstract][Full Text] [Related]
7. Absorbable self-reinforced polyglycolide (SR-PGA) screws for the fixation of fractures and osteotomies: strength and strength retention in vitro and in vivo. Vasenius J; Helevirta P; Kuisma H; Rokkanen P; Törmälä P Clin Mater; 1994; 17(3):119-23. PubMed ID: 10150598 [TBL] [Abstract][Full Text] [Related]
8. [Resorbable osteosynthesis rods. An experimental study of the biomechanics and degradation of various rods of polyglycolide and poly (-L-lactide)]. Kunz E; Weckbach A; Rein S Unfallchirurgie; 1995 Feb; 21(1):1-7. PubMed ID: 7709490 [TBL] [Abstract][Full Text] [Related]
9. A histomorphological study on self-reinforced polyglycolide (SR-PGA) osteosynthesis implants coated with slowly absorbable polymers. Vasenius J; Vainionpää S; Vihtonen K; Mero M; Mäkelä A; Törmälä P; Rokkanen P J Biomed Mater Res; 1990 Dec; 24(12):1615-35. PubMed ID: 2177471 [TBL] [Abstract][Full Text] [Related]
10. Fixation of diaphyseal femoral osteotomy with self-reinforced biodegradable intramedullary implants: an experimental study on growing dogs. Miettinen H; Mäkelä A; Rokkanen P; Törmälä P; Vainio J Clin Mater; 1992; 9(1):31-6. PubMed ID: 10149956 [TBL] [Abstract][Full Text] [Related]
11. Fixation of experimental osteotomies with bioabsorbable SR-polylactide-polyglycolide (80/20) polymeric rods. Mäkelä E; Mäkelä EA; Partio EK; Juutilainen T; Lähteenkorva K; Törmälä P; Rokkanen P J Mater Sci Mater Med; 2008 Mar; 19(3):1061-7. PubMed ID: 17701306 [TBL] [Abstract][Full Text] [Related]
12. Fixation of distal femoral osteotomies with self-reinforced polymer/bioactive glass rods: an experimental study on rabbits. Pyhältö T; Lapinsuo M; Pätiälä H; Pelto M; Törmälä P; Rokkanen P Biomaterials; 2005 Feb; 26(6):645-54. PubMed ID: 15282142 [TBL] [Abstract][Full Text] [Related]
13. Absorbable membranes for bone repair: an experimental study on rabbits. Ashammakhi N; Mäkelä A; Vihtonen K; Rokkanen P; Törmälä P Clin Mater; 1994; 17(3):113-8. PubMed ID: 10150597 [TBL] [Abstract][Full Text] [Related]
14. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo. Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587 [TBL] [Abstract][Full Text] [Related]
15. Intramedullary nailing of the cortical bone osteotomies in rabbits with self-reinforced poly-L-lactide rods manufactured by the fibrillation method. Manninen MJ; Pohjonen T Biomaterials; 1993; 14(4):305-12. PubMed ID: 8477000 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite: an experimental study on rabbits. Kettunen J; Mäkelä EA; Miettinen H; Nevalainen T; Heikkilä M; Pohjonen T; Törmälä P; Rokkanen P Biomaterials; 1998 Jul; 19(14):1219-28. PubMed ID: 9720885 [TBL] [Abstract][Full Text] [Related]
18. Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. Weiler A; Helling HJ; Kirch U; Zirbes TK; Rehm KE J Bone Joint Surg Br; 1996 May; 78(3):369-76. PubMed ID: 8636168 [TBL] [Abstract][Full Text] [Related]
19. Tissue response to polyglycolide and polylevolactide pins in osteotomized cancellous bone. Nordström P; Pihlajamäki H; Toivonen T; Törmälä P; Rokkanen P Clin Orthop Relat Res; 2001 Jan; (382):247-57. PubMed ID: 11153995 [TBL] [Abstract][Full Text] [Related]
20. Fixation of femoral shaft osteotomy with intramedullary metallic or absorbable rod: an experimental study on growing dogs. Miettinen H; Mäkelä EA; Rokkanen P; Törmälä P J Biomater Sci Polym Ed; 1992; 4(2):135-43. PubMed ID: 1336673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]