These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 21736445)
1. An integrated geometric modelling framework for patient-specific computational haemodynamic study on wide-ranged vascular network. Torii R; Oshima M Comput Methods Biomech Biomed Engin; 2012; 15(6):615-25. PubMed ID: 21736445 [TBL] [Abstract][Full Text] [Related]
2. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. Piccinelli M; Veneziani A; Steinman DA; Remuzzi A; Antiga L IEEE Trans Med Imaging; 2009 Aug; 28(8):1141-55. PubMed ID: 19447701 [TBL] [Abstract][Full Text] [Related]
3. Computational framework for the generation of one-dimensional vascular models accounting for uncertainty in networks extracted from medical images. Bartolo MA; Taylor-LaPole AM; Gandhi D; Johnson A; Li Y; Slack E; Stevens I; Turner ZG; Weigand JD; Puelz C; Husmeier D; Olufsen MS J Physiol; 2024 Aug; 602(16):3929-3954. PubMed ID: 39075725 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA). Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501 [TBL] [Abstract][Full Text] [Related]
5. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Laganà K; Dubini G; Migliavacca F; Pietrabissa R; Pennati G; Veneziani A; Quarteroni A Biorheology; 2002; 39(3-4):359-64. PubMed ID: 12122253 [TBL] [Abstract][Full Text] [Related]
6. Implicit reconstruction of vasculatures using bivariate piecewise algebraic splines. Hong Q; Li Q; Tian J IEEE Trans Med Imaging; 2012 Mar; 31(3):543-53. PubMed ID: 22020672 [TBL] [Abstract][Full Text] [Related]
7. Automatic segmentation of 3D micro-CT coronary vascular images. Lee J; Beighley P; Ritman E; Smith N Med Image Anal; 2007 Dec; 11(6):630-47. PubMed ID: 17827050 [TBL] [Abstract][Full Text] [Related]
8. pyNS: an open-source framework for 0D haemodynamic modelling. Manini S; Antiga L; Botti L; Remuzzi A Ann Biomed Eng; 2015 Jun; 43(6):1461-73. PubMed ID: 25549775 [TBL] [Abstract][Full Text] [Related]
9. The challenges of imaging based computational fluid dynamics. Anayiotos A; Cheng G; Ito Y; Gray J; Agarwal R Stud Health Technol Inform; 2004; 103():225-32. PubMed ID: 15747925 [TBL] [Abstract][Full Text] [Related]
10. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Castro MA; Putman CM; Cebral JR Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554 [TBL] [Abstract][Full Text] [Related]
11. Vascular fluorescence casting and imaging cryomicrotomy for computerized three-dimensional renal arterial reconstruction. Lagerveld BW; ter Wee RD; de la Rosette JJ; Spaan JA; Wijkstra H BJU Int; 2007 Aug; 100(2):387-91. PubMed ID: 17498198 [TBL] [Abstract][Full Text] [Related]
12. Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. Heinzer S; Kuhn G; Krucker T; Meyer E; Ulmann-Schuler A; Stampanoni M; Gassmann M; Marti HH; Müller R; Vogel J Neuroimage; 2008 Feb; 39(4):1549-58. PubMed ID: 18077185 [TBL] [Abstract][Full Text] [Related]
13. Vascular active contour for vessel tree segmentation. Shang Y; Deklerck R; Nyssen E; Markova A; de Mey J; Yang X; Sun K IEEE Trans Biomed Eng; 2011 Apr; 58(4):1023-32. PubMed ID: 21138795 [TBL] [Abstract][Full Text] [Related]
14. CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation. Arthurs CJ; Khlebnikov R; Melville A; Marčan M; Gomez A; Dillon-Murphy D; Cuomo F; Silva Vieira M; Schollenberger J; Lynch SR; Tossas-Betancourt C; Iyer K; Hopper S; Livingston E; Youssefi P; Noorani A; Ben Ahmed S; Nauta FJH; van Bakel TMJ; Ahmed Y; van Bakel PAJ; Mynard J; Di Achille P; Gharahi H; Lau KD; Filonova V; Aguirre M; Nama N; Xiao N; Baek S; Garikipati K; Sahni O; Nordsletten D; Figueroa CA PLoS Comput Biol; 2021 May; 17(5):e1008881. PubMed ID: 33970900 [TBL] [Abstract][Full Text] [Related]
15. Fast algorithm for 3-D vascular tree modeling. Kretowski M; Rolland Y; Bézy-Wendling J; Coatrieux JL Comput Methods Programs Biomed; 2003 Feb; 70(2):129-36. PubMed ID: 12507789 [TBL] [Abstract][Full Text] [Related]
16. Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations. De Santis G; De Beule M; Segers P; Verdonck P; Verhegghe B Comput Methods Biomech Biomed Engin; 2011 Sep; 14(9):797-802. PubMed ID: 21390938 [TBL] [Abstract][Full Text] [Related]
17. Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Bazilevs Y; Hsu MC; Zhang Y; Wang W; Kvamsdal T; Hentschel S; Isaksen JG Biomech Model Mechanobiol; 2010 Aug; 9(4):481-98. PubMed ID: 20111978 [TBL] [Abstract][Full Text] [Related]
18. A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data. Mittal N; Zhou Y; Ung S; Linares C; Molloi S; Kassab GS Ann Biomed Eng; 2005 Aug; 33(8):1015-26. PubMed ID: 16133910 [TBL] [Abstract][Full Text] [Related]
19. On the influence of variation in haemodynamic conditions on the generation and growth of cerebral aneurysms and atherogenesis: a computational model. Chatziprodromou I; Poulikakos D; Ventikos Y J Biomech; 2007; 40(16):3626-40. PubMed ID: 17761184 [TBL] [Abstract][Full Text] [Related]
20. Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing. Wang ZL; Teo JC; Chui CK; Ong SH; Yan CH; Wang SC; Wong HK; Teoh SH Comput Methods Programs Biomed; 2005 Oct; 80(1):25-35. PubMed ID: 16043256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]