These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 21736591)
41. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. Wang X; Tang D; Huang D Plant Physiol Biochem; 2014 Feb; 75():96-104. PubMed ID: 24429133 [TBL] [Abstract][Full Text] [Related]
42. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Haase S; Rothe A; Kania A; Wasaki J; Römheld V; Engels C; Kandeler E; Neumann G J Environ Qual; 2008; 37(3):1254-62. PubMed ID: 18453445 [TBL] [Abstract][Full Text] [Related]
43. Integration of nitrogen and potassium signaling. Tsay YF; Ho CH; Chen HY; Lin SH Annu Rev Plant Biol; 2011; 62():207-26. PubMed ID: 21495843 [TBL] [Abstract][Full Text] [Related]
44. Impact of a short-term heat event on C and N relations in shoots vs. roots of the stress-tolerant C4 grass, Andropogon gerardii. Mainali KP; Heckathorn SA; Wang D; Weintraub MN; Frantz JM; Hamilton EW J Plant Physiol; 2014 Jul; 171(12):977-85. PubMed ID: 24974323 [TBL] [Abstract][Full Text] [Related]
46. Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes. Sinha SK; Rani M; Bansal N; Gayatri ; Venkatesh K; Mandal PK Appl Biochem Biotechnol; 2015 Nov; 177(6):1299-312. PubMed ID: 26315134 [TBL] [Abstract][Full Text] [Related]
47. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. Darwent MJ; Paterson E; McDonald AJ; Tomos AD J Exp Bot; 2003 Jan; 54(381):325-34. PubMed ID: 12493860 [TBL] [Abstract][Full Text] [Related]
48. Combined Transcriptome and Proteome Analysis of Masson Pine ( Ren Q; Zhou Y; Zhou X Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066140 [TBL] [Abstract][Full Text] [Related]
49. Effects of a stay-green mutation on plant nitrogen relations in Lolium perenne during N starvation and after defoliation. Macduff JH; Humphreys MO; Thomas H Ann Bot; 2002 Jan; 89(1):11-21. PubMed ID: 12096812 [TBL] [Abstract][Full Text] [Related]
50. Local NO3- or NH4+ supply modifies the root system architecture of Cedrus atlantica seedlings grown in a split-root device. Boukcim H; Pagès L; Mousain D J Plant Physiol; 2006 Dec; 163(12):1293-304. PubMed ID: 17126733 [TBL] [Abstract][Full Text] [Related]
51. [Physiological processes and major regulating factors of nitrogen uptake by plant roots]. Huo CF; Sun HL; Fan ZQ; Wang ZQ Ying Yong Sheng Tai Xue Bao; 2007 Jun; 18(6):1356-64. PubMed ID: 17763743 [TBL] [Abstract][Full Text] [Related]
52. Solute content and energy status of roots of barley plants cultivated at different pH on nitrate- or ammonium-nitrogen. Lang B; Kaiser WM New Phytol; 1994 Nov; 128(3):451-459. PubMed ID: 33874582 [TBL] [Abstract][Full Text] [Related]
53. Time-Course of Metabolic and Proteomic Responses to Different Nitrate/Ammonium Availabilities in Roots and Leaves of Maize. Prinsi B; Espen L Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30060519 [TBL] [Abstract][Full Text] [Related]
54. Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants. Kováčik J; Klejdus B; Babula P; Jarošová M J Plant Physiol; 2014 Feb; 171(3-4):260-8. PubMed ID: 24054753 [TBL] [Abstract][Full Text] [Related]
55. Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. Meise P; Jozefowicz AM; Uptmoor R; Mock HP; Ordon F; Schum A J Proteomics; 2017 Aug; 166():68-82. PubMed ID: 28733104 [TBL] [Abstract][Full Text] [Related]
56. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. Giles CD; Brown LK; Adu MO; Mezeli MM; Sandral GA; Simpson RJ; Wendler R; Shand CA; Menezes-Blackburn D; Darch T; Stutter MI; Lumsdon DG; Zhang H; Blackwell MS; Wearing C; Cooper P; Haygarth PM; George TS Plant Sci; 2017 Feb; 255():12-28. PubMed ID: 28131338 [TBL] [Abstract][Full Text] [Related]
57. Comparative Proteomic Analysis of Plant Acclimation to Six Different Long-Term Environmental Changes. Carrera DÁ; Oddsson S; Grossmann J; Trachsel C; Streb S Plant Cell Physiol; 2018 Mar; 59(3):510-526. PubMed ID: 29300930 [TBL] [Abstract][Full Text] [Related]
58. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Miller AJ; Fan X; Shen Q; Smith SJ J Exp Bot; 2008; 59(1):111-9. PubMed ID: 18093964 [TBL] [Abstract][Full Text] [Related]
59. Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments. Oliveira HC; Sodek L Amino Acids; 2013 Feb; 44(2):743-55. PubMed ID: 22990842 [TBL] [Abstract][Full Text] [Related]
60. Nitrate Reduction in Roots and Shoots of Barley (Hordeum vulgare L.) and Corn (Zea mays L.) Seedlings: I. N Study. Gojon A; Soussana JF; Passama L; Robin P Plant Physiol; 1986 Sep; 82(1):254-60. PubMed ID: 16665002 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]