These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21736650)

  • 1. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
    Kannangara R; Motawia MS; Hansen NK; Paquette SM; Olsen CE; Møller BL; Jørgensen K
    Plant J; 2011 Oct; 68(2):287-301. PubMed ID: 21736650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
    Jørgensen K; Morant AV; Morant M; Jensen NB; Olsen CE; Kannangara R; Motawia MS; Møller BL; Bak S
    Plant Physiol; 2011 Jan; 155(1):282-92. PubMed ID: 21045121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD; Busk PK; Svendsen I; Møller BL
    J Biol Chem; 2000 Jan; 275(3):1966-75. PubMed ID: 10636899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz).
    Koch B; Nielsen VS; Halkier BA; Olsen CE; Møller BL
    Arch Biochem Biophys; 1992 Jan; 292(1):141-50. PubMed ID: 1727632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava.
    Schmidt FB; Cho SK; Olsen CE; Yang SW; Møller BL; Jørgensen K
    Plant Direct; 2018 Feb; 2(2):e00038. PubMed ID: 31245705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S
    Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of cyanogen-free transgenic cassava.
    Siritunga D; Sayre RT
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity.
    Jones PR; Moller BL; Hoj PB
    J Biol Chem; 1999 Dec; 274(50):35483-91. PubMed ID: 10585420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic GWAS-based dissection of genetic basis underlying nutrient quality variation and domestication of cassava storage root.
    Ding Z; Fu L; Wang B; Ye J; Ou W; Yan Y; Li M; Zeng L; Dong X; Tie W; Ye X; Yang J; Xie Z; Wang Y; Guo J; Chen S; Xiao X; Wan Z; An F; Zhang J; Peng M; Luo J; Li K; Hu W
    Genome Biol; 2023 Dec; 24(1):289. PubMed ID: 38098107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigured Cyanogenic Glucoside Biosynthesis in
    Hansen CC; Sørensen M; Veiga TAM; Zibrandtsen JFS; Heskes AM; Olsen CE; Boughton BA; Møller BL; Neilson EHJ
    Plant Physiol; 2018 Nov; 178(3):1081-1095. PubMed ID: 30297456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification and functional characterization of a cyanogenic glucosyltransferase from flax (Linum unsitatissimum).
    Kazachkov M; Li Q; Shen W; Wang L; Gao P; Xiang D; Datla R; Zou J
    PLoS One; 2020; 15(2):e0227840. PubMed ID: 32023283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided engineering of key amino acids in UGT85B1 controlling substrate and stereo-specificity in aromatic cyanogenic glucoside biosynthesis.
    Del Giudice R; Putkaradze N; Dos Santos BM; Hansen CC; Crocoll C; Motawia MS; Fredslund F; Laursen T; Welner DH
    Plant J; 2022 Sep; 111(6):1539-1549. PubMed ID: 35819080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC; Braatz de Andrade LR; Rabbi IY; Mueller LA; Jorge de Oliveira E; Bauchet GJ
    Plant J; 2021 Feb; 105(3):754-770. PubMed ID: 33164279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New paths of cyanogenesis from enzymatic-promoted cleavage of β-cyanoglucosides are suggested by a mixed DFT/QTAIM approach.
    Díaz-Sobac R; Vázquez-Luna A; Rivadeneyra-Domínguez E; Rodríguez-Landa JF; Guerrero T; Durand-Niconoff JS
    J Mol Model; 2019 Sep; 25(9):295. PubMed ID: 31478108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.
    Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S
    BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci.
    Easson MLAE; Malka O; Paetz C; Hojná A; Reichelt M; Stein B; van Brunschot S; Feldmesser E; Campbell L; Colvin J; Winter S; Morin S; Gershenzon J; Vassão DG
    Sci Rep; 2021 Jun; 11(1):13244. PubMed ID: 34168179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN; Ihemere U; Ellery C; Sayre RT
    PLoS One; 2011; 6(7):e21996. PubMed ID: 21799761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.