BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 21737083)

  • 1. Retention and selectivity of stationary phases for hydrophilic interaction chromatography.
    Guo Y; Gaiki S
    J Chromatogr A; 2011 Sep; 1218(35):5920-38. PubMed ID: 21737083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of silica gel modification with cyclofructans on properties of hydrophilic interaction liquid chromatography stationary phases.
    Kozlík P; Símová V; Kalíková K; Bosáková Z; Armstrong DW; Tesařová E
    J Chromatogr A; 2012 Sep; 1257():58-65. PubMed ID: 22921504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: hydrophilicity, charge effects, structural selectivity, and separation efficiency.
    Kawachi Y; Ikegami T; Takubo H; Ikegami Y; Miyamoto M; Tanaka N
    J Chromatogr A; 2011 Sep; 1218(35):5903-19. PubMed ID: 21782195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography.
    Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G
    J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary and mobile phases in hydrophilic interaction chromatography: a review.
    Jandera P
    Anal Chim Acta; 2011 Apr; 692(1-2):1-25. PubMed ID: 21501708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The retention behaviour of polar compounds on zirconia based stationary phases under hydrophilic interaction liquid chromatography conditions.
    Kučera R; Kovaříková P; Klivický M; Klimeš J
    J Chromatogr A; 2011 Sep; 1218(39):6981-6. PubMed ID: 21880318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic interaction liquid chromatography in the separation of a moderately lipophilic drug from its highly polar metabolites--the cardioprotectant dexrazoxane as a model case.
    Kovaříková P; Stariat J; Klimeš J; Hrušková K; Vávrová K
    J Chromatogr A; 2011 Jan; 1218(3):416-26. PubMed ID: 21168142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the interaction mode in hydrophilic interaction chromatography.
    Dinh NP; Jonsson T; Irgum K
    J Chromatogr A; 2011 Sep; 1218(35):5880-91. PubMed ID: 21803363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts.
    Jandera P
    J Sep Sci; 2008 May; 31(9):1421-37. PubMed ID: 18428181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography.
    West C; Khater S; Lesellier E
    J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomic applications of HILIC-LC-MS.
    Cubbon S; Antonio C; Wilson J; Thomas-Oates J
    Mass Spectrom Rev; 2010; 29(5):671-84. PubMed ID: 19557839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Stationary phases for hydrophilic interaction liquid chromatography and their applications in separation of traditional Chinese medicines].
    Guo Z; Zhang X; Xu Q; Liang X
    Se Pu; 2009 Sep; 27(5):675-81. PubMed ID: 20073204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography.
    Chirita RI; West C; Zubrzycki S; Finaru AL; Elfakir C
    J Chromatogr A; 2011 Sep; 1218(35):5939-63. PubMed ID: 21571288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation efficiencies in hydrophilic interaction chromatography.
    Ikegami T; Tomomatsu K; Takubo H; Horie K; Tanaka N
    J Chromatogr A; 2008 Mar; 1184(1-2):474-503. PubMed ID: 18294645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC).
    Hao Z; Xiao B; Weng N
    J Sep Sci; 2008 May; 31(9):1449-64. PubMed ID: 18435508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclofructan 6 based stationary phases for hydrophilic interaction liquid chromatography.
    Qiu H; Loukotková L; Sun P; Tesařová E; Bosáková Z; Armstrong DW
    J Chromatogr A; 2011 Jan; 1218(2):270-9. PubMed ID: 21167492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.