These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 21737121)
1. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Grieger KD; Hansen SF; Sørensen PB; Baun A Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121 [TBL] [Abstract][Full Text] [Related]
2. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426 [TBL] [Abstract][Full Text] [Related]
3. Conscious worst case definition for risk assessment, part I: a knowledge mapping approach for defining most critical risk factors in integrative risk management of chemicals and nanomaterials. Sørensen PB; Thomsen M; Assmuth T; Grieger KD; Baun A Sci Total Environ; 2010 Aug; 408(18):3852-9. PubMed ID: 19945144 [TBL] [Abstract][Full Text] [Related]
4. Fate and risks of nanomaterials in aquatic and terrestrial environments. Batley GE; Kirby JK; McLaughlin MJ Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090 [TBL] [Abstract][Full Text] [Related]
5. Nanomaterials as possible contaminants: the fullerene example. Wiesner MR; Hotze EM; Brant JA; Espinasse B Water Sci Technol; 2008; 57(3):305-10. PubMed ID: 18309205 [TBL] [Abstract][Full Text] [Related]
6. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios. Bai C; Li Y J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828 [TBL] [Abstract][Full Text] [Related]
7. Conscious worst case definition for risk assessment, part II: a methodological case study for pesticide risk assessment. Sørensen PB; Giralt F; Rallo R; Espinosa G; Münier B; Gyldenkaerne S; Thomsen M Sci Total Environ; 2010 Aug; 408(18):3860-70. PubMed ID: 20015539 [TBL] [Abstract][Full Text] [Related]
8. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
9. The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. Mudunkotuwa IA; Grassian VH J Environ Monit; 2011 May; 13(5):1135-44. PubMed ID: 21523296 [TBL] [Abstract][Full Text] [Related]
10. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Yan L; Zhao F; Li S; Hu Z; Zhao Y Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592 [TBL] [Abstract][Full Text] [Related]
11. Nanomaterial health effects--part 1: background and current knowledge. Powell MC; Kanarek MS WMJ; 2006 Mar; 105(2):16-20. PubMed ID: 16628969 [TBL] [Abstract][Full Text] [Related]
12. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E; Bossa N; Wiesner MR; Gunsch CK Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610 [TBL] [Abstract][Full Text] [Related]
13. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
14. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
15. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512 [TBL] [Abstract][Full Text] [Related]
16. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701 [TBL] [Abstract][Full Text] [Related]
17. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. Musee N; Thwala M; Nota N J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709 [TBL] [Abstract][Full Text] [Related]
18. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. El-Temsah YS; Joner EJ Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781 [TBL] [Abstract][Full Text] [Related]
19. Nano-C60 cytotoxicity is due to lipid peroxidation. Sayes CM; Gobin AM; Ausman KD; Mendez J; West JL; Colvin VL Biomaterials; 2005 Dec; 26(36):7587-95. PubMed ID: 16005959 [TBL] [Abstract][Full Text] [Related]
20. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation - Recommendations from the FP7 project NanoRem. Hjorth R; Coutris C; Nguyen NHA; Sevcu A; Gallego-Urrea JA; Baun A; Joner EJ Chemosphere; 2017 Sep; 182():525-531. PubMed ID: 28521168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]