These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 21737121)
21. Nano-bio effects: interaction of nanomaterials with cells. Cheng LC; Jiang X; Wang J; Chen C; Liu RS Nanoscale; 2013 May; 5(9):3547-69. PubMed ID: 23532468 [TBL] [Abstract][Full Text] [Related]
22. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Moore MN Environ Int; 2006 Dec; 32(8):967-76. PubMed ID: 16859745 [TBL] [Abstract][Full Text] [Related]
23. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Chen PJ; Su CH; Tseng CY; Tan SW; Cheng CH Mar Pollut Bull; 2011; 63(5-12):339-46. PubMed ID: 21440267 [TBL] [Abstract][Full Text] [Related]
24. Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Semerád J; Čvančarová M; Filip J; Kašlík J; Zlotá J; Soukupová J; Cajthaml T Chemosphere; 2018 Dec; 213():568-577. PubMed ID: 30268053 [TBL] [Abstract][Full Text] [Related]
25. A comprehensive environmental assessment approach to engineered nanomaterials. Davis JM Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):139-49. PubMed ID: 23255303 [TBL] [Abstract][Full Text] [Related]
26. Transformations of nanomaterials in the environment. Lowry GV; Gregory KB; Apte SC; Lead JR Environ Sci Technol; 2012 Jul; 46(13):6893-9. PubMed ID: 22582927 [TBL] [Abstract][Full Text] [Related]
27. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Tsuji JS; Maynard AD; Howard PC; James JT; Lam CW; Warheit DB; Santamaria AB Toxicol Sci; 2006 Jan; 89(1):42-50. PubMed ID: 16177233 [TBL] [Abstract][Full Text] [Related]
28. The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Becker H; Herzberg F; Schulte A; Kolossa-Gehring M Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363 [TBL] [Abstract][Full Text] [Related]
29. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Singh R; Misra V; Singh RP Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721 [TBL] [Abstract][Full Text] [Related]
30. Advancing exposure characterization for chemical evaluation and risk assessment. Cohen Hubal EA; Richard A; Aylward L; Edwards S; Gallagher J; Goldsmith MR; Isukapalli S; Tornero-Velez R; Weber E; Kavlock R J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):299-313. PubMed ID: 20574904 [TBL] [Abstract][Full Text] [Related]
31. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Chen PJ; Tan SW; Wu WL Environ Sci Technol; 2012 Aug; 46(15):8431-9. PubMed ID: 22747062 [TBL] [Abstract][Full Text] [Related]
32. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Meesters JA; Veltman K; Hendriks AJ; van de Meent D Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247 [TBL] [Abstract][Full Text] [Related]
33. Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity. Kadar E; Tarran GA; Jha AN; Al-Subiai SN Environ Sci Technol; 2011 Apr; 45(8):3245-51. PubMed ID: 21291273 [TBL] [Abstract][Full Text] [Related]
34. Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Mylon SE; Sun Q; Waite TD Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873 [TBL] [Abstract][Full Text] [Related]
35. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Klecka G; Persoon C; Currie R Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664 [TBL] [Abstract][Full Text] [Related]
36. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Zhang H; He X; Zhang Z; Zhang P; Li Y; Ma Y; Kuang Y; Zhao Y; Chai Z Environ Sci Technol; 2011 Apr; 45(8):3725-30. PubMed ID: 21428445 [TBL] [Abstract][Full Text] [Related]
37. An environmental fate, exposure and risk assessment of ethylene oxide from diffuse emissions. Staples CA; Gulledge W Chemosphere; 2006 Oct; 65(4):691-8. PubMed ID: 16516948 [TBL] [Abstract][Full Text] [Related]
38. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Hendren CO; Lowry M; Grieger KD; Money ES; Johnston JM; Wiesner MR; Beaulieu SM Environ Sci Technol; 2013 Feb; 47(3):1190-205. PubMed ID: 23293982 [TBL] [Abstract][Full Text] [Related]
39. Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Ging J; Tejerina-Anton R; Ramakrishnan G; Nielsen M; Murphy K; Gorham JM; Nguyen T; Orlov A Sci Total Environ; 2014 Mar; 473-474():9-19. PubMed ID: 24361443 [TBL] [Abstract][Full Text] [Related]
40. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms. Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]