These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21737338)

  • 21. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ; Fuller AR; Wiley DF; Hamann B; Choi SS; Werner JS
    J Biomed Opt; 2007; 12(4):041206. PubMed ID: 17867795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated segmentation of intraretinal cystoid fluid in optical coherence tomography.
    Wilkins GR; Houghton OM; Oldenburg AL
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1109-14. PubMed ID: 22271827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair.
    Ko TH; Fujimoto JG; Duker JS; Paunescu LA; Drexler W; Baumal CR; Puliafito CA; Reichel E; Rogers AH; Schuman JS
    Ophthalmology; 2004 Nov; 111(11):2033-43. PubMed ID: 15522369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.
    Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F
    J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional imaging of macular holes with high-speed optical coherence tomography.
    Hangai M; Ojima Y; Gotoh N; Inoue R; Yasuno Y; Makita S; Yamanari M; Yatagai T; Kita M; Yoshimura N
    Ophthalmology; 2007 Apr; 114(4):763-73. PubMed ID: 17187861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.
    Jørgensen TM; Thomadsen J; Christensen U; Soliman W; Sander B
    J Biomed Opt; 2007; 12(4):041208. PubMed ID: 17867797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segmentation of three-dimensional retinal image data.
    Fuller A; Zawadzki R; Choi S; Wiley D; Werner J; Hamann B
    IEEE Trans Vis Comput Graph; 2007; 13(6):1719-26. PubMed ID: 17968130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of anatomic structures in human retinal imagery.
    Tobin KW; Chaum E; Govindasamy VP; Karnowski TP
    IEEE Trans Med Imaging; 2007 Dec; 26(12):1729-39. PubMed ID: 18092741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic localization of retinal landmarks.
    Cheng X; Wong DW; Liu J; Lee BH; Tan NM; Zhang J; Cheng CY; Cheung G; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4954-7. PubMed ID: 23367039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina.
    Fernández DC
    IEEE Trans Med Imaging; 2005 Aug; 24(8):929-45. PubMed ID: 16092326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Optical coherence tomography of macular holes].
    Wei W; Yang W; Zhao L; Shi X; Chen Z; Wang J
    Zhonghua Yan Ke Za Zhi; 1999 Nov; 35(6):419-21, 23. PubMed ID: 11835850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated segmentation of the macula by optical coherence tomography.
    Fabritius T; Makita S; Miura M; Myllylä R; Yasuno Y
    Opt Express; 2009 Aug; 17(18):15659-69. PubMed ID: 19724565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra-retinal layer segmentation in optical coherence tomography using an active contour approach.
    Yazdanpanah A; Hamarneh G; Smith B; Sarunic M
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):649-56. PubMed ID: 20426167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical coherence tomography in imaging of macular diseases.
    Figurska M; Robaszkiewicz J; Wierzbowska J
    Klin Oczna; 2010; 112(4-6):138-46. PubMed ID: 20825070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. User-guided segmentation for volumetric retinal optical coherence tomography images.
    Yin X; Chao JR; Wang RK
    J Biomed Opt; 2014 Aug; 19(8):086020. PubMed ID: 25147962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated detection of exudates and macula for grading of diabetic macular edema.
    Akram MU; Tariq A; Khan SA; Javed MY
    Comput Methods Programs Biomed; 2014 Apr; 114(2):141-52. PubMed ID: 24548898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.