BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21737456)

  • 1. Insights into the Clp/HSP100 chaperone system from chloroplasts of Arabidopsis thaliana.
    Rosano GL; Bruch EM; Ceccarelli EA
    J Biol Chem; 2011 Aug; 286(34):29671-80. PubMed ID: 21737456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein.
    Bruch EM; Rosano GL; Ceccarelli EA
    BMC Plant Biol; 2012 Apr; 12():57. PubMed ID: 22545953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance.
    Sjögren LLE; Tanabe N; Lymperopoulos P; Khan NZ; Rodermel SR; Aronsson H; Clarke AK
    J Biol Chem; 2014 Apr; 289(16):11318-11330. PubMed ID: 24599948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant expression, purification and SAXS analysis of Arabidopsis thaliana ClpC1.
    Jagdev MK; Dandapat J; Vasudevan D
    Int J Biol Macromol; 2021 Jan; 167():1273-1280. PubMed ID: 33189753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones.
    Colombo CV; Ceccarelli EA; Rosano GL
    BMC Plant Biol; 2014 Aug; 14():228. PubMed ID: 25149061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures reveal N-terminal Domain of Arabidopsis thaliana ClpD to be highly divergent from that of ClpC1.
    Mohapatra C; Kumar Jagdev M; Vasudevan D
    Sci Rep; 2017 Mar; 7():44366. PubMed ID: 28287170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes.
    Singh A; Singh U; Mittal D; Grover A
    BMC Genomics; 2010 Feb; 11():95. PubMed ID: 20141629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis.
    Pulido P; Llamas E; Llorente B; Ventura S; Wright LP; Rodríguez-Concepción M
    PLoS Genet; 2016 Jan; 12(1):e1005824. PubMed ID: 26815787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope.
    Flores-Pérez Ú; Bédard J; Tanabe N; Lymperopoulos P; Clarke AK; Jarvis P
    Plant Physiol; 2016 Jan; 170(1):147-62. PubMed ID: 26586836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis.
    Constan D; Froehlich JE; Rangarajan S; Keegstra K
    Plant Physiol; 2004 Nov; 136(3):3605-15. PubMed ID: 15516497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content.
    Sjögren LL; MacDonald TM; Sutinen S; Clarke AK
    Plant Physiol; 2004 Dec; 136(4):4114-26. PubMed ID: 15563614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts.
    Chou ML; Chu CC; Chen LJ; Akita M; Li HM
    J Cell Biol; 2006 Dec; 175(6):893-900. PubMed ID: 17158958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development.
    Lee U; Rioflorido I; Hong SW; Larkindale J; Waters ER; Vierling E
    Plant J; 2007 Jan; 49(1):115-27. PubMed ID: 17144892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.
    Andersson FI; Blakytny R; Kirstein J; Turgay K; Bukau B; Mogk A; Clarke AK
    J Biol Chem; 2006 Mar; 281(9):5468-75. PubMed ID: 16361263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of ClpB3, a chloroplastic disaggregase from Arabidopsis thaliana.
    Parcerisa IL; Rosano GL; Ceccarelli EA
    Plant Mol Biol; 2020 Nov; 104(4-5):451-465. PubMed ID: 32803477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis.
    Park S; Rodermel SR
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12765-70. PubMed ID: 15304652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.
    Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK
    Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors.
    Montandon C; Friso G; Liao JR; Choi J; van Wijk KJ
    J Proteome Res; 2019 Jun; 18(6):2585-2600. PubMed ID: 31070379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis.
    Llamas E; Pulido P; Rodriguez-Concepcion M
    PLoS Genet; 2017 Sep; 13(9):e1007022. PubMed ID: 28937985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a unified model of the action of CLP/HSP100 chaperones in chloroplasts.
    Rosano GL; Bruch EM; Colombo CV; Ceccarelli EA
    Plant Signal Behav; 2012 Jun; 7(6):672-4. PubMed ID: 22580704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.