These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21737456)

  • 1. Insights into the Clp/HSP100 chaperone system from chloroplasts of Arabidopsis thaliana.
    Rosano GL; Bruch EM; Ceccarelli EA
    J Biol Chem; 2011 Aug; 286(34):29671-80. PubMed ID: 21737456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein.
    Bruch EM; Rosano GL; Ceccarelli EA
    BMC Plant Biol; 2012 Apr; 12():57. PubMed ID: 22545953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance.
    Sjögren LLE; Tanabe N; Lymperopoulos P; Khan NZ; Rodermel SR; Aronsson H; Clarke AK
    J Biol Chem; 2014 Apr; 289(16):11318-11330. PubMed ID: 24599948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant expression, purification and SAXS analysis of Arabidopsis thaliana ClpC1.
    Jagdev MK; Dandapat J; Vasudevan D
    Int J Biol Macromol; 2021 Jan; 167():1273-1280. PubMed ID: 33189753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones.
    Colombo CV; Ceccarelli EA; Rosano GL
    BMC Plant Biol; 2014 Aug; 14():228. PubMed ID: 25149061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures reveal N-terminal Domain of Arabidopsis thaliana ClpD to be highly divergent from that of ClpC1.
    Mohapatra C; Kumar Jagdev M; Vasudevan D
    Sci Rep; 2017 Mar; 7():44366. PubMed ID: 28287170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes.
    Singh A; Singh U; Mittal D; Grover A
    BMC Genomics; 2010 Feb; 11():95. PubMed ID: 20141629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis.
    Pulido P; Llamas E; Llorente B; Ventura S; Wright LP; Rodríguez-Concepción M
    PLoS Genet; 2016 Jan; 12(1):e1005824. PubMed ID: 26815787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope.
    Flores-Pérez Ú; Bédard J; Tanabe N; Lymperopoulos P; Clarke AK; Jarvis P
    Plant Physiol; 2016 Jan; 170(1):147-62. PubMed ID: 26586836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis.
    Constan D; Froehlich JE; Rangarajan S; Keegstra K
    Plant Physiol; 2004 Nov; 136(3):3605-15. PubMed ID: 15516497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content.
    Sjögren LL; MacDonald TM; Sutinen S; Clarke AK
    Plant Physiol; 2004 Dec; 136(4):4114-26. PubMed ID: 15563614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts.
    Chou ML; Chu CC; Chen LJ; Akita M; Li HM
    J Cell Biol; 2006 Dec; 175(6):893-900. PubMed ID: 17158958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development.
    Lee U; Rioflorido I; Hong SW; Larkindale J; Waters ER; Vierling E
    Plant J; 2007 Jan; 49(1):115-27. PubMed ID: 17144892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.
    Andersson FI; Blakytny R; Kirstein J; Turgay K; Bukau B; Mogk A; Clarke AK
    J Biol Chem; 2006 Mar; 281(9):5468-75. PubMed ID: 16361263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of ClpB3, a chloroplastic disaggregase from Arabidopsis thaliana.
    Parcerisa IL; Rosano GL; Ceccarelli EA
    Plant Mol Biol; 2020 Nov; 104(4-5):451-465. PubMed ID: 32803477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis.
    Park S; Rodermel SR
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12765-70. PubMed ID: 15304652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.
    Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK
    Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors.
    Montandon C; Friso G; Liao JR; Choi J; van Wijk KJ
    J Proteome Res; 2019 Jun; 18(6):2585-2600. PubMed ID: 31070379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis.
    Llamas E; Pulido P; Rodriguez-Concepcion M
    PLoS Genet; 2017 Sep; 13(9):e1007022. PubMed ID: 28937985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a unified model of the action of CLP/HSP100 chaperones in chloroplasts.
    Rosano GL; Bruch EM; Colombo CV; Ceccarelli EA
    Plant Signal Behav; 2012 Jun; 7(6):672-4. PubMed ID: 22580704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.