These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 21737844)
1. A knowledge discovery and reuse pipeline for information extraction in clinical notes. Patrick JD; Nguyen DH; Wang Y; Li M J Am Med Inform Assoc; 2011; 18(5):574-9. PubMed ID: 21737844 [TBL] [Abstract][Full Text] [Related]
2. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Uzuner Ö; South BR; Shen S; DuVall SL J Am Med Inform Assoc; 2011; 18(5):552-6. PubMed ID: 21685143 [TBL] [Abstract][Full Text] [Related]
3. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
4. MITRE system for clinical assertion status classification. Clark C; Aberdeen J; Coarr M; Tresner-Kirsch D; Wellner B; Yeh A; Hirschman L J Am Med Inform Assoc; 2011; 18(5):563-7. PubMed ID: 21515542 [TBL] [Abstract][Full Text] [Related]
5. A flexible framework for deriving assertions from electronic medical records. Roberts K; Harabagiu SM J Am Med Inform Assoc; 2011; 18(5):568-73. PubMed ID: 21724741 [TBL] [Abstract][Full Text] [Related]
6. Automatic extraction of relations between medical concepts in clinical texts. Rink B; Harabagiu S; Roberts K J Am Med Inform Assoc; 2011; 18(5):594-600. PubMed ID: 21846787 [TBL] [Abstract][Full Text] [Related]
7. Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification. Minard AL; Ligozat AL; Ben Abacha A; Bernhard D; Cartoni B; Deléger L; Grau B; Rosset S; Zweigenbaum P; Grouin C J Am Med Inform Assoc; 2011; 18(5):588-93. PubMed ID: 21597105 [TBL] [Abstract][Full Text] [Related]
8. The Yale cTAKES extensions for document classification: architecture and application. Garla V; Lo Re V; Dorey-Stein Z; Kidwai F; Scotch M; Womack J; Justice A; Brandt C J Am Med Inform Assoc; 2011; 18(5):614-20. PubMed ID: 21622934 [TBL] [Abstract][Full Text] [Related]
10. Automated concept-level information extraction to reduce the need for custom software and rules development. D'Avolio LW; Nguyen TM; Goryachev S; Fiore LD J Am Med Inform Assoc; 2011; 18(5):607-13. PubMed ID: 21697292 [TBL] [Abstract][Full Text] [Related]
11. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. de Bruijn B; Cherry C; Kiritchenko S; Martin J; Zhu X J Am Med Inform Assoc; 2011; 18(5):557-62. PubMed ID: 21565856 [TBL] [Abstract][Full Text] [Related]
12. Recognizing Questions and Answers in EMR Templates Using Natural Language Processing. Divita G; Shen S; Carter ME; Redd A; Forbush T; Palmer M; Samore MH; Gundlapalli AV Stud Health Technol Inform; 2014; 202():149-52. PubMed ID: 25000038 [TBL] [Abstract][Full Text] [Related]
13. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
14. Automatic detection of protected health information from clinic narratives. Yang H; Garibaldi JM J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S30-S38. PubMed ID: 26231070 [TBL] [Abstract][Full Text] [Related]
15. A classification approach to coreference in discharge summaries: 2011 i2b2 challenge. Xu Y; Liu J; Wu J; Wang Y; Tu Z; Sun JT; Tsujii J; Chang EI J Am Med Inform Assoc; 2012; 19(5):897-905. PubMed ID: 22505762 [TBL] [Abstract][Full Text] [Related]
16. Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries. Xu Y; Hong K; Tsujii J; Chang EI J Am Med Inform Assoc; 2012; 19(5):824-32. PubMed ID: 22586067 [TBL] [Abstract][Full Text] [Related]
17. Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records. Berge GT; Granmo OC; Tveit TO; Ruthjersen AL; Sharma J BMC Med Inform Decis Mak; 2023 Sep; 23(1):188. PubMed ID: 37723446 [TBL] [Abstract][Full Text] [Related]
18. Fast Model Adaptation for Automated Section Classification in Electronic Medical Records. Ni J; Delaney B; Florian R Stud Health Technol Inform; 2015; 216():35-9. PubMed ID: 26262005 [TBL] [Abstract][Full Text] [Related]
19. Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes. Divita G; Carter M; Redd A; Zeng Q; Gupta K; Trautner B; Samore M; Gundlapalli A Methods Inf Med; 2015; 54(6):548-52. PubMed ID: 26534722 [TBL] [Abstract][Full Text] [Related]
20. Extraction Of Adverse Events From Clinical Documents To Support Decision Making Using Semantic Preprocessing. Gaebel J; Kolter T; Arlt F; Denecke K Stud Health Technol Inform; 2015; 216():1030. PubMed ID: 26262330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]