These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21737924)

  • 1. Effects of mutations of Lys41 and Asp102 of bacteriorhodopsin.
    Zhao Y; Wang Y; Ma D; Wu J; Huang W; Ding J
    Biosci Biotechnol Biochem; 2011; 75(7):1364-70. PubMed ID: 21737924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substitution of proline-77 to aspartate on the light-driven proton release of bacteriorhodopsin.
    Wang Y; Zhao Y; Ming M; Wu J; Huang W; Ding J
    Photochem Photobiol; 2012; 88(4):922-7. PubMed ID: 22443335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin.
    Ming M; Lu M; Balashov SP; Ebrey TG; Li Q; Ding J
    Biophys J; 2006 May; 90(9):3322-32. PubMed ID: 16473896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton pump caught in the act.
    Gennis RB; Ebrey TG
    Science; 1999 Oct; 286(5438):252-3. PubMed ID: 10577192
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.
    Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK
    Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps.
    Enami N; Yoshimura K; Murakami M; Okumura H; Ihara K; Kouyama T
    J Mol Biol; 2006 May; 358(3):675-85. PubMed ID: 16540121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the function of Tyr83 in bacteriorhodopsin: features of the Y83F and Y83N mutants.
    Imasheva ES; Lu M; Balashov SP; Ebrey TG; Chen Y; Ablonczy Z; Menick DR; Crouch RK
    Biochemistry; 2001 Nov; 40(44):13320-30. PubMed ID: 11683642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of a surface residue, lysine-129, reverses the order of proton release and uptake in bacteriorhodopsin; guanidine hydrochloride restores it.
    Govindjee R; Imasheva ES; Misra S; Balashov SP; Ebrey TG; Chen N; Menick DR; Crouch RK
    Biophys J; 1997 Feb; 72(2 Pt 1):886-98. PubMed ID: 9017214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.
    Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution.
    Hasegawa N; Jonotsuka H; Miki K; Takeda K
    Sci Rep; 2018 Sep; 8(1):13123. PubMed ID: 30177765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin.
    Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR
    Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel expression and characterization of a light driven proton pump archaerhodopsin 4 in a Halobacterium salinarum strain.
    Cao Z; Ding X; Peng B; Zhao Y; Ding J; Watts A; Zhao X
    Biochim Biophys Acta; 2015; 1847(4-5):390-398. PubMed ID: 25559161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85.
    Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK
    Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin.
    Váró G; Zimányi L; Chang M; Ni B; Needleman R; Lanyi JK
    Biophys J; 1992 Mar; 61(3):820-6. PubMed ID: 1504253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.