BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21738009)

  • 1. The cellular prion protein with a monoacylated glycosylphosphatidylinositol anchor modifies cell membranes, inhibits cell signaling and reduces prion formation.
    Bate C; Williams A
    Prion; 2011; 5(2):65-8. PubMed ID: 21738009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoacylated cellular prion protein modifies cell membranes, inhibits cell signaling, and reduces prion formation.
    Bate C; Williams A
    J Biol Chem; 2011 Mar; 286(11):8752-8. PubMed ID: 21212283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.
    Bate C; Nolan W; Williams A
    J Biol Chem; 2016 Jan; 291(1):160-70. PubMed ID: 26553874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation.
    Bate C; Nolan W; Williams A
    Prion; 2016 Mar; 10(2):127-30. PubMed ID: 26901126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glycosylphosphatidylinositol anchor is a major determinant of prion binding and replication.
    Bate C; Tayebi M; Williams A
    Biochem J; 2010 Apr; 428(1):95-101. PubMed ID: 20196773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells.
    Bate C; Tayebi M; Diomede L; Salmona M; Williams A
    BMC Biol; 2008 Sep; 6():39. PubMed ID: 18789130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylphosphatidylinositol anchor analogues sequester cholesterol and reduce prion formation.
    Bate C; Tayebi M; Williams A
    J Biol Chem; 2010 Jul; 285(29):22017-26. PubMed ID: 20427265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequestration of free cholesterol in cell membranes by prions correlates with cytoplasmic phospholipase A2 activation.
    Bate C; Tayebi M; Williams A
    BMC Biol; 2008 Feb; 6():8. PubMed ID: 18269734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering of sialylated glycosylphosphatidylinositol anchors mediates PrP-induced activation of cytoplasmic phospholipase A 2 and synapse damage.
    Bate C; Williams A
    Prion; 2012; 6(4):350-3. PubMed ID: 22895089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform.
    Taraboulos A; Scott M; Semenov A; Avrahami D; Laszlo L; Prusiner SB
    J Cell Biol; 1995 Apr; 129(1):121-32. PubMed ID: 7698979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice.
    Puig B; Altmeppen HC; Linsenmeier L; Chakroun K; Wegwitz F; Piontek UK; Tatzelt J; Bate C; Magnus T; Glatzel M
    PLoS Pathog; 2019 Jan; 15(1):e1007520. PubMed ID: 30608982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage.
    West E; Osborne C; Nolan W; Bate C
    Biology (Basel); 2015 Jun; 4(2):367-82. PubMed ID: 26043272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glypican-1 mediates both prion protein lipid raft association and disease isoform formation.
    Taylor DR; Whitehouse IJ; Hooper NM
    PLoS Pathog; 2009 Nov; 5(11):e1000666. PubMed ID: 19936054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection.
    Marshall KE; Hughson A; Vascellari S; Priola SA; Sakudo A; Onodera T; Baron GS
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27847358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prion protein and lipid rafts.
    Taylor DR; Hooper NM
    Mol Membr Biol; 2006; 23(1):89-99. PubMed ID: 16611584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lipid rafts in prion protein biology.
    Lewis V; Hooper NM
    Front Biosci (Landmark Ed); 2011 Jan; 16(1):151-68. PubMed ID: 21196164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of lipid rafts and GM1 in the segregation and processing of prion protein.
    Botto L; Cunati D; Coco S; Sesana S; Bulbarelli A; Biasini E; Colombo L; Negro A; Chiesa R; Masserini M; Palestini P
    PLoS One; 2014; 9(5):e98344. PubMed ID: 24859148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glycosylphosphatidylinositol analogue reduced prion-derived peptide mediated activation of cytoplasmic phospholipase A2, synapse degeneration and neuronal death.
    Bate C; Tayebi M; Williams A
    Neuropharmacology; 2010; 59(1-2):93-9. PubMed ID: 20398681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform.
    Baron GS; Caughey B
    J Biol Chem; 2003 Apr; 278(17):14883-92. PubMed ID: 12594216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells.
    Kumar R; McClain D; Young R; Carlson GA
    J Gen Virol; 2008 Jun; 89(Pt 6):1525-1532. PubMed ID: 18474570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.