These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 21738446)

  • 21. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.
    Nagase AM; Onoda K; Foo JC; Haji T; Akaishi R; Yamaguchi S; Sakai K; Morita K
    J Neurosci; 2018 Mar; 38(10):2631-2651. PubMed ID: 29431647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals.
    Hauser TU; Eldar E; Dolan RJ
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7395-E7404. PubMed ID: 28808037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The road not taken: Common and distinct neural correlates of regret and relief.
    Varma MM; Chowdhury A; Yu R
    Neuroimage; 2023 Dec; 283():120413. PubMed ID: 37858905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What might have been? The role of the ventromedial prefrontal cortex and lateral orbitofrontal cortex in counterfactual emotions and choice.
    Levens SM; Larsen JT; Bruss J; Tranel D; Bechara A; Mellers BA
    Neuropsychologia; 2014 Feb; 54():77-86. PubMed ID: 24333168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frontal theta links prediction errors to behavioral adaptation in reinforcement learning.
    Cavanagh JF; Frank MJ; Klein TJ; Allen JJ
    Neuroimage; 2010 Feb; 49(4):3198-209. PubMed ID: 19969093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frontal, Striatal, and Medial Temporal Sensitivity to Value Distinguishes Risk-Taking from Risk-Aversive Older Adults during Decision Making.
    Goh JO; Su YS; Tang YJ; McCarrey AC; Tereshchenko A; Elkins W; Resnick SM
    J Neurosci; 2016 Dec; 36(49):12498-12509. PubMed ID: 27927964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices.
    O'Doherty JP
    Ann N Y Acad Sci; 2007 Dec; 1121():254-72. PubMed ID: 17872386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional specialization of the primate frontal cortex during decision making.
    Lee D; Rushworth MF; Walton ME; Watanabe M; Sakagami M
    J Neurosci; 2007 Aug; 27(31):8170-3. PubMed ID: 17670961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separate neural mechanisms underlie choices and strategic preferences in risky decision making.
    Venkatraman V; Payne JW; Bettman JR; Luce MF; Huettel SA
    Neuron; 2009 May; 62(4):593-602. PubMed ID: 19477159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Re-evaluating the role of the orbitofrontal cortex in reward and reinforcement.
    Noonan MP; Kolling N; Walton ME; Rushworth MF
    Eur J Neurosci; 2012 Apr; 35(7):997-1010. PubMed ID: 22487031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-function relationships in the processing of regret in the orbitofrontal cortex.
    Sommer T; Peters J; Gläscher J; Büchel C
    Brain Struct Funct; 2009 Oct; 213(6):535-51. PubMed ID: 19760243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans.
    Fouragnan E; Queirazza F; Retzler C; Mullinger KJ; Philiastides MG
    Sci Rep; 2017 Jul; 7(1):4762. PubMed ID: 28684734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning: not just the facts, ma'am, but the counterfactuals as well.
    Platt ML; Hayden B
    PLoS Biol; 2011 Jun; 9(6):e1001092. PubMed ID: 21738445
    [No Abstract]   [Full Text] [Related]  

  • 35. Under construction: ventral and lateral frontal lobe contributions to value-based decision-making and learning.
    Vaidya AR; Fellows LK
    F1000Res; 2020; 9():. PubMed ID: 32161644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The involvement of the orbitofrontal cortex in the experience of regret.
    Camille N; Coricelli G; Sallet J; Pradat-Diehl P; Duhamel JR; Sirigu A
    Science; 2004 May; 304(5674):1167-70. PubMed ID: 15155951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Necessary Contributions of Human Frontal Lobe Subregions to Reward Learning in a Dynamic, Multidimensional Environment.
    Vaidya AR; Fellows LK
    J Neurosci; 2016 Sep; 36(38):9843-58. PubMed ID: 27656023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reward expectation and prediction error in human medial frontal cortex: an EEG study.
    Silvetti M; Nuñez Castellar E; Roger C; Verguts T
    Neuroimage; 2014 Jan; 84():376-82. PubMed ID: 24007806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Outcome representations, counterfactual comparisons and the human orbitofrontal cortex: implications for neuroimaging studies of decision-making.
    Ursu S; Carter CS
    Brain Res Cogn Brain Res; 2005 Apr; 23(1):51-60. PubMed ID: 15795133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.