These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 21738446)

  • 61. The neural code of reward anticipation in human orbitofrontal cortex.
    Kahnt T; Heinzle J; Park SQ; Haynes JD
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6010-5. PubMed ID: 20231475
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Counterfactual thinking and reward processing: an fMRI study of responses to gamble outcomes.
    Henderson SE; Norris CJ
    Neuroimage; 2013 Jan; 64():582-9. PubMed ID: 22974555
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Restricting temptations: neural mechanisms of precommitment.
    Crockett MJ; Braams BR; Clark L; Tobler PN; Robbins TW; Kalenscher T
    Neuron; 2013 Jul; 79(2):391-401. PubMed ID: 23889938
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Policy adjustment in a dynamic economic game.
    Li J; McClure SM; King-Casas B; Montague PR
    PLoS One; 2006 Dec; 1(1):e103. PubMed ID: 17183636
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Neural correlates of risk prediction error during reinforcement learning in humans.
    d'Acremont M; Lu ZL; Li X; Van der Linden M; Bechara A
    Neuroimage; 2009 Oct; 47(4):1929-39. PubMed ID: 19442744
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice.
    Lou B; Hsu WY; Sajda P
    J Neurosci; 2015 Sep; 35(38):13064-75. PubMed ID: 26400937
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neural systems for choice and valuation with counterfactual learning signals.
    Tobia MJ; Guo R; Schwarze U; Boehmer W; Gläscher J; Finckh B; Marschner A; Büchel C; Obermayer K; Sommer T
    Neuroimage; 2014 Apr; 89():57-69. PubMed ID: 24321554
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Testing the reinforcement learning hypothesis of social conformity.
    Levorsen M; Ito A; Suzuki S; Izuma K
    Hum Brain Mapp; 2021 Apr; 42(5):1328-1342. PubMed ID: 33245196
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural Computations Underlying Causal Structure Learning.
    Tomov MS; Dorfman HM; Gershman SJ
    J Neurosci; 2018 Aug; 38(32):7143-7157. PubMed ID: 29959234
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Neurocomputational mechanisms of adaptive learning in social exchanges.
    Vanyukov PM; Hallquist MN; Delgado M; Szanto K; Dombrovski AY
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):985-997. PubMed ID: 30756349
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Brain, emotion and decision making: the paradigmatic example of regret.
    Coricelli G; Dolan RJ; Sirigu A
    Trends Cogn Sci; 2007 Jun; 11(6):258-65. PubMed ID: 17475537
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human fronto-mesolimbic networks guide decisions about charitable donation.
    Moll J; Krueger F; Zahn R; Pardini M; de Oliveira-Souza R; Grafman J
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15623-8. PubMed ID: 17030808
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
    Leong YC; Radulescu A; Daniel R; DeWoskin V; Niv Y
    Neuron; 2017 Jan; 93(2):451-463. PubMed ID: 28103483
    [TBL] [Abstract][Full Text] [Related]  

  • 75. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.
    Frank MJ; Gagne C; Nyhus E; Masters S; Wiecki TV; Cavanagh JF; Badre D
    J Neurosci; 2015 Jan; 35(2):485-94. PubMed ID: 25589744
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Congruence of Inherent and Acquired Values Facilitates Reward-Based Decision-Making.
    Chien S; Wiehler A; Spezio M; Gläscher J
    J Neurosci; 2016 May; 36(18):5003-12. PubMed ID: 27147653
    [TBL] [Abstract][Full Text] [Related]  

  • 77. How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning.
    Correa CMC; Noorman S; Jiang J; Palminteri S; Cohen MX; Lebreton M; van Gaal S
    J Neurosci; 2018 Nov; 38(48):10338-10348. PubMed ID: 30327418
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task.
    Rolls ET; McCabe C; Redoute J
    Cereb Cortex; 2008 Mar; 18(3):652-63. PubMed ID: 17586603
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task.
    Steiner AP; Redish AD
    Nat Neurosci; 2014 Jul; 17(7):995-1002. PubMed ID: 24908102
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Brain signals of a Surprise-Actor-Critic model: Evidence for multiple learning modules in human decision making.
    Liakoni V; Lehmann MP; Modirshanechi A; Brea J; Lutti A; Gerstner W; Preuschoff K
    Neuroimage; 2022 Feb; 246():118780. PubMed ID: 34875383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.