These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 21738454)
1. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis. Bonde BK; Beste DJ; Laing E; Kierzek AM; McFadden J PLoS Comput Biol; 2011 Jun; 7(6):e1002060. PubMed ID: 21738454 [TBL] [Abstract][Full Text] [Related]
2. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis. Fang X; Wallqvist A; Reifman J BMC Syst Biol; 2010 Nov; 4():160. PubMed ID: 21092312 [TBL] [Abstract][Full Text] [Related]
3. Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions. Pawaria S; Lama A; Raje M; Dikshit KL Appl Environ Microbiol; 2008 Jun; 74(11):3512-22. PubMed ID: 18390674 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. Beste DJ; Laing E; Bonde B; Avignone-Rossa C; Bushell ME; McFadden JJ J Bacteriol; 2007 Jun; 189(11):3969-76. PubMed ID: 17384194 [TBL] [Abstract][Full Text] [Related]
6. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Chandrasekaran S; Price ND Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17845-50. PubMed ID: 20876091 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress. Lin W; de Sessions PF; Teoh GH; Mohamed AN; Zhu YO; Koh VH; Ang ML; Dedon PC; Hibberd ML; Alonso S Infect Immun; 2016 Sep; 84(9):2505-23. PubMed ID: 27324481 [TBL] [Abstract][Full Text] [Related]
8. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Zimmermann M; Kogadeeva M; Gengenbacher M; McEwen G; Mollenkopf HJ; Zamboni N; Kaufmann SHE; Sauer U mSystems; 2017; 2(4):. PubMed ID: 28845460 [TBL] [Abstract][Full Text] [Related]
9. Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Rienksma RA; Schaap PJ; Martins Dos Santos VAP; Suarez-Diez M Front Cell Infect Microbiol; 2019; 9():144. PubMed ID: 31139575 [TBL] [Abstract][Full Text] [Related]
10. Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex. Lofthouse EK; Wheeler PR; Beste DJ; Khatri BL; Wu H; Mendum TA; Kierzek AM; McFadden J PLoS One; 2013; 8(9):e75913. PubMed ID: 24098743 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic Characterization of Tuberculous Sputum Reveals a Host Warburg Effect and Microbial Cholesterol Catabolism. Lai RPJ; Cortes T; Marais S; Rockwood N; Burke ML; Garza-Garcia A; Horswell S; Sesay AK; O'Garra A; Young DB; Wilkinson RJ mBio; 2021 Dec; 12(6):e0176621. PubMed ID: 34872348 [TBL] [Abstract][Full Text] [Related]
13. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach. Bose T; Das C; Dutta A; Mahamkali V; Sadhu S; Mande SS BMC Genomics; 2018 Jul; 19(1):555. PubMed ID: 30053801 [TBL] [Abstract][Full Text] [Related]
14. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. Gonzalo-Asensio J; Mostowy S; Harders-Westerveen J; Huygen K; Hernández-Pando R; Thole J; Behr M; Gicquel B; Martín C PLoS One; 2008; 3(10):e3496. PubMed ID: 18946503 [TBL] [Abstract][Full Text] [Related]
15. [A review of studies on differential transcriptional profile of Mycobacterium tuberculosis in vivo and in vitro]. Zheng XJ; Zhang ZD; Li Q Zhonghua Jie He He Hu Xi Za Zhi; 2013 Aug; 36(8):597-600. PubMed ID: 24252738 [No Abstract] [Full Text] [Related]
16. Flux imbalance analysis and the sensitivity of cellular growth to changes in metabolite pools. Reznik E; Mehta P; Segrè D PLoS Comput Biol; 2013; 9(8):e1003195. PubMed ID: 24009492 [TBL] [Abstract][Full Text] [Related]
17. Expression profiling of Mycobacterium tuberculosis H37Rv and Mycobacterium smegmatis in acid-nitrosative multi-stress displays defined regulatory networks. Cossu A; Sechi LA; Bandino E; Zanetti S; Rosu V Microb Pathog; 2013 Dec; 65():89-96. PubMed ID: 24184341 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. Rienksma RA; Suarez-Diez M; Mollenkopf HJ; Dolganov GM; Dorhoi A; Schoolnik GK; Martins Dos Santos VA; Kaufmann SH; Schaap PJ; Gengenbacher M BMC Genomics; 2015 Feb; 16(1):34. PubMed ID: 25649146 [TBL] [Abstract][Full Text] [Related]
19. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Beste DJ; Hooper T; Stewart G; Bonde B; Avignone-Rossa C; Bushell ME; Wheeler P; Klamt S; Kierzek AM; McFadden J Genome Biol; 2007; 8(5):R89. PubMed ID: 17521419 [TBL] [Abstract][Full Text] [Related]
20. Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods. Zhang YW; Lin Y; Yu HY; Tian RN; Li F Int J Mol Med; 2019 Oct; 44(4):1243-1254. PubMed ID: 31364746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]