These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21738454)

  • 21. Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence.
    Bartek IL; Woolhiser LK; Baughn AD; Basaraba RJ; Jacobs WR; Lenaerts AJ; Voskuil MI
    mBio; 2014 Jun; 5(3):e01106-14. PubMed ID: 24895305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection.
    Rohde KH; Veiga DF; Caldwell S; Balázsi G; Russell DG
    PLoS Pathog; 2012; 8(6):e1002769. PubMed ID: 22737072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection.
    Fontán P; Aris V; Ghanny S; Soteropoulos P; Smith I
    Infect Immun; 2008 Feb; 76(2):717-25. PubMed ID: 18070897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A systems perspective of host-pathogen interactions: predicting disease outcome in tuberculosis.
    Raman K; Bhat AG; Chandra N
    Mol Biosyst; 2010 Mar; 6(3):516-30. PubMed ID: 20174680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The LuxR family regulator Rv0195 modulates Mycobacterium tuberculosis dormancy and virulence.
    Fang H; Yu D; Hong Y; Zhou X; Li C; Sun B
    Tuberculosis (Edinb); 2013 Jul; 93(4):425-31. PubMed ID: 23673208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis.
    Ottenhoff TH; Dass RH; Yang N; Zhang MM; Wong HE; Sahiratmadja E; Khor CC; Alisjahbana B; van Crevel R; Marzuki S; Seielstad M; van de Vosse E; Hibberd ML
    PLoS One; 2012; 7(9):e45839. PubMed ID: 23029268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest.
    Shi L; Sohaskey CD; Pheiffer C; Datta P; Parks M; McFadden J; North RJ; Gennaro ML
    Mol Microbiol; 2010 Dec; 78(5):1199-215. PubMed ID: 21091505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mycobacterium tuberculosis gene expression profiling within the context of protein networks.
    Rachman H; Strong M; Schaible U; Schuchhardt J; Hagens K; Mollenkopf H; Eisenberg D; Kaufmann SH
    Microbes Infect; 2006 Mar; 8(3):747-57. PubMed ID: 16513384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady state analysis of the genetic regulatory network incorporating underlying molecular mechanisms for anaerobic metabolism in Escherichia coli.
    Srinivasan S; Venkatesh KV
    Mol Biosyst; 2014 Mar; 10(3):562-75. PubMed ID: 24402032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.
    Lovewell RR; Sassetti CM; VanderVen BC
    Curr Opin Microbiol; 2016 Feb; 29():30-6. PubMed ID: 26544033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The immunosuppressive effects of a novel recombinant LipQ (Rv2485c) protein of Mycobacterium tuberculosis on human macrophage cell lines.
    Kumar A; Manisha ; Sangha GK; Shrivastava A; Kaur J
    Microb Pathog; 2017 Jun; 107():361-367. PubMed ID: 28412202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis.
    Chuang YM; Bandyopadhyay N; Rifat D; Rubin H; Bader JS; Karakousis PC
    mBio; 2015 Mar; 6(2):e02428. PubMed ID: 25784702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pleiotropic transcriptional response of Mycobacterium tuberculosis to vitamin C is robust and overlaps with the bacterial response to multiple intracellular stresses.
    Sikri K; Batra SD; Nandi M; Kumari P; Taneja NK; Tyagi JS
    Microbiology (Reading); 2015 Apr; 161(Pt 4):739-53. PubMed ID: 25645949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. M. tuberculosis curli pili (MTP) facilitates a reduction of microbicidal activity of infected THP-1 macrophages during early stages of infection.
    Ashokcoomar S; Reedoy KS; Loots DT; Beukes D; van Reenen M; Pillay B; Pillay M
    Comp Immunol Microbiol Infect Dis; 2022; 90-91():101907. PubMed ID: 36368237
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Huang L; Nazarova EV; Russell DG
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30848232
    [No Abstract]   [Full Text] [Related]  

  • 36. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis.
    Beste DJ; Nöh K; Niedenführ S; Mendum TA; Hawkins ND; Ward JL; Beale MH; Wiechert W; McFadden J
    Chem Biol; 2013 Aug; 20(8):1012-21. PubMed ID: 23911587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triacylglycerol: nourishing molecule in endurance of Mycobacterium tuberculosis.
    Mali PC; Meena LS
    J Biosci; 2018 Mar; 43(1):149-154. PubMed ID: 29485123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarly Localized EccE
    Soler-Arnedo P; Sala C; Zhang M; Cole ST; Piton J
    J Bacteriol; 2020 Feb; 202(5):. PubMed ID: 31843799
    [No Abstract]   [Full Text] [Related]  

  • 39. The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis.
    Ohno H; Zhu G; Mohan VP; Chu D; Kohno S; Jacobs WR; Chan J
    Cell Microbiol; 2003 Sep; 5(9):637-48. PubMed ID: 12925133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another.
    Schnappinger D; Schoolnik GK; Ehrt S
    Microbes Infect; 2006 Apr; 8(4):1132-40. PubMed ID: 16517202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.