BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 21738471)

  • 1. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.
    Williams B; Kabbage M; Kim HJ; Britt R; Dickman MB
    PLoS Pathog; 2011 Jun; 7(6):e1002107. PubMed ID: 21738471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development.
    Kim KS; Min JY; Dickman MB
    Mol Plant Microbe Interact; 2008 May; 21(5):605-12. PubMed ID: 18393620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum.
    Kabbage M; Williams B; Dickman MB
    PLoS Pathog; 2013; 9(4):e1003287. PubMed ID: 23592997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
    Chen X; Liu J; Lin G; Wang A; Wang Z; Lu G
    Plant Cell Rep; 2013 Oct; 32(10):1589-99. PubMed ID: 23749099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.
    Zhou J; Zeng L; Liu J; Xing D
    PLoS Pathog; 2015 May; 11(5):e1004878. PubMed ID: 25993128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection.
    Guimarães RL; Stotz HU
    Plant Physiol; 2004 Nov; 136(3):3703-11. PubMed ID: 15502012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis.
    Westrick NM; Ranjan A; Jain S; Grau CR; Smith DL; Kabbage M
    BMC Genomics; 2019 Feb; 20(1):157. PubMed ID: 30808300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant.
    Cessna SG; Sears VE; Dickman MB; Low PS
    Plant Cell; 2000 Nov; 12(11):2191-200. PubMed ID: 11090218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction.
    Fagundes-Nacarath IRF; Debona D; Rodrigues FA
    Plant Physiol Biochem; 2018 Aug; 129():109-121. PubMed ID: 29870862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.
    Liang X; Liberti D; Li M; Kim YT; Hutchens A; Wilson R; Rollins JA
    Mol Plant Pathol; 2015 Aug; 16(6):559-71. PubMed ID: 25285668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase.
    Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y
    Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment.
    Calla B; Blahut-Beatty L; Koziol L; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):576-88. PubMed ID: 24330102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco.
    da Silva LF; Dias CV; Cidade LC; Mendes JS; Pirovani CP; Alvim FC; Pereira GA; Aragão FJ; Cascardo JC; Costa MG
    Mol Plant Microbe Interact; 2011 Jul; 24(7):839-48. PubMed ID: 21405988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.
    Heller A; Witt-Geiges T
    PLoS One; 2013; 8(8):e72292. PubMed ID: 23951305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum.
    Zhou J; Sun A; Xing D
    J Exp Bot; 2013 Aug; 64(11):3261-72. PubMed ID: 23814275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases.
    Ranjan A; Jayaraman D; Grau C; Hill JH; Whitham SA; Ané JM; Smith DL; Kabbage M
    Mol Plant Pathol; 2018 Mar; 19(3):700-714. PubMed ID: 28378935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum.
    Liang X; Rollins JA
    Phytopathology; 2018 Oct; 108(10):1128-1140. PubMed ID: 30048598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum.
    Xu L; Xiang M; White D; Chen W
    Environ Microbiol; 2015 Aug; 17(8):2896-909. PubMed ID: 25720941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection.
    Calla B; Blahut-Beatty L; Koziol L; Zhang Y; Neece DJ; Carbajulca D; Garcia A; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):563-75. PubMed ID: 24382019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.