These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 21739111)

  • 1. Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images.
    Chen B; Kitasaka T; Honma H; Takabatake H; Mori M; Natori H; Mori K
    Int J Comput Assist Radiol Surg; 2012 May; 7(3):465-82. PubMed ID: 21739111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.
    Messay T; Hardie RC; Rogers SK
    Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels.
    Saien S; Hamid Pilevar A; Abrishami Moghaddam H
    Comput Biol Med; 2014 Nov; 54():188-98. PubMed ID: 25303113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter.
    Teramoto A; Fujita H
    Int J Comput Assist Radiol Surg; 2013 Mar; 8(2):193-205. PubMed ID: 22684487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours.
    Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C
    Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic lung nodule detection using multi-scale dot nodule-enhancement filter and weighted support vector machines in chest computed tomography.
    Gu Y; Lu X; Zhang B; Zhao Y; Yu D; Gao L; Cui G; Wu L; Zhou T
    PLoS One; 2019; 14(1):e0210551. PubMed ID: 30629724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Segmentation Framework of Pulmonary Nodules in Lung CT Images.
    Mukhopadhyay S
    J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pulmonary vessel suppression on computerized detection of nodules in chest CT scans.
    Gu X; Xie W; Fang Q; Zhao J; Li Q
    Med Phys; 2020 Oct; 47(10):4917-4927. PubMed ID: 32681587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT.
    Guo W; Li Q
    Med Phys; 2014 Sep; 41(9):091906. PubMed ID: 25186393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function.
    Lo SB; Freedman MT; Gillis LB; White CS; Mun SK
    AJR Am J Roentgenol; 2018 Mar; 210(3):480-488. PubMed ID: 29336601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-based computer-aided detection of lung nodules in thoracic CT images.
    Ye X; Lin X; Dehmeshki J; Slabaugh G; Beddoe G
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1810-20. PubMed ID: 19527950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive morphology based segmentation technique for lung nodule detection in thoracic CT image.
    Halder A; Chatterjee S; Dey D; Kole S; Munshi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105720. PubMed ID: 32877818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistage segmentation model and SVM-ensemble for precise lung nodule detection.
    Naqi SM; Sharif M; Yasmin M
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1083-1095. PubMed ID: 29492880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier.
    Li Q; Li F; Doi K
    Acad Radiol; 2008 Feb; 15(2):165-75. PubMed ID: 18206615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel lung nodules detection scheme based on vessel segmentation on CT images.
    Jia T; Zhang H; Meng H
    Biomed Mater Eng; 2014; 24(6):3179-86. PubMed ID: 25227026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
    Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B
    Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD).
    Suzuki K
    Phys Med Biol; 2009 Sep; 54(18):S31-45. PubMed ID: 19687563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification.
    Shiraishi J; Li Q; Suzuki K; Engelmann R; Doi K
    Med Phys; 2006 Jul; 33(7):2642-53. PubMed ID: 16898468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT.
    Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A
    Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.