These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 21739265)
1. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Zhang HT; Zhan XB; Zheng ZY; Wu JR; English N; Yu XB; Lin CC Appl Microbiol Biotechnol; 2012 Jan; 93(1):367-79. PubMed ID: 21739265 [TBL] [Abstract][Full Text] [Related]
2. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Zheng ZY; Jiang Y; Zhan XB; Ma LW; Wu JR; Zhang LM; Lin CC Prikl Biokhim Mikrobiol; 2014; 50(1):44-51. PubMed ID: 25272751 [TBL] [Abstract][Full Text] [Related]
3. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442. Liang Y; Zhu L; Ding H; Gao M; Zheng Z; Wu J; Zhan X Carbohydr Polym; 2017 Feb; 157():1687-1694. PubMed ID: 27987884 [TBL] [Abstract][Full Text] [Related]
4. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen]. Dai X; Yang L; Zheng Z; Chen H; Zhan X Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):1018-25. PubMed ID: 26665599 [TBL] [Abstract][Full Text] [Related]
5. Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Liang Y; Zhu L; Gao M; Wu J; Zhan X Prep Biochem Biotechnol; 2018 May; 48(5):446-456. PubMed ID: 29561218 [TBL] [Abstract][Full Text] [Related]
6. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis. Gao H; Xie F; Zhang W; Tian J; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D Carbohydr Polym; 2020 Oct; 245():116486. PubMed ID: 32718606 [TBL] [Abstract][Full Text] [Related]
7. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions. Zhang HT; Zhan XB; Zheng ZY; Wu JR; Yu XB; Jiang Y; Lin CC Appl Microbiol Biotechnol; 2011 Jul; 91(1):163-75. PubMed ID: 21472535 [TBL] [Abstract][Full Text] [Related]
8. Improved curdlan production with discarded bottom parts of Asparagus spear. Anane RF; Sun H; Zhao L; Wang L; Lin C; Mao Z Microb Cell Fact; 2017 Apr; 16(1):59. PubMed ID: 28388915 [TBL] [Abstract][Full Text] [Related]
9. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN. Rafigh SM; Yazdi AV; Vossoughi M; Safekordi AA; Ardjmand M Int J Biol Macromol; 2014 Sep; 70():463-73. PubMed ID: 25062991 [TBL] [Abstract][Full Text] [Related]
10. Promoting substrates uptake and curdlan synthesis of Agrobacterium sp. by attenuating the exopolysaccharide encapsulation. Liu Z; Xu Y; Wang Z; Zhu L; Li Z; Jiang Y; Zhan X; Gao M Carbohydr Polym; 2023 Sep; 315():120941. PubMed ID: 37230642 [TBL] [Abstract][Full Text] [Related]
11. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct. West TP; Nemmers B J Basic Microbiol; 2008 Feb; 48(1):65-8. PubMed ID: 18247398 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose. Shin HD; Liu L; Kim MK; Park YI; Chen R J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1323-31. PubMed ID: 27387419 [TBL] [Abstract][Full Text] [Related]
14. Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Kim MK; Lee IY; Ko JH; Rhee YH; Park YH Biotechnol Bioeng; 1999 Feb; 62(3):317-23. PubMed ID: 10099543 [TBL] [Abstract][Full Text] [Related]
15. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp. Liang Y; Zhu L; Gao M; Zheng Z; Wu J; Zhan X Int J Biol Macromol; 2018 Jan; 106():611-619. PubMed ID: 28807687 [TBL] [Abstract][Full Text] [Related]
16. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp. Gao M; Liu Z; Zhao Z; Wang Z; Hu X; Jiang Y; Yan J; Li Z; Zheng Z; Zhan X Int J Biol Macromol; 2022 Apr; 205():193-202. PubMed ID: 35181324 [TBL] [Abstract][Full Text] [Related]
17. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749. West TP J Basic Microbiol; 2009 Dec; 49(6):589-92. PubMed ID: 19810049 [TBL] [Abstract][Full Text] [Related]
18. [Influence of nitrogen source NH4 Cl concentration on curdlan production in Alcaligenes faecalis]. Sun YS; Wang L; Zhan XB; Zheng ZY; Chen YZ Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):328-31. PubMed ID: 16013500 [TBL] [Abstract][Full Text] [Related]
19. Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. Jin LH; Um HJ; Yin CJ; Kim YH; Lee JH J Biotechnol; 2008 Nov; 138(3-4):80-7. PubMed ID: 18824044 [TBL] [Abstract][Full Text] [Related]
20. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546. Zhang W; Gao H; Huang Y; Wu S; Tian J; Niu Y; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D Int J Biol Macromol; 2020 Dec; 165(Pt A):222-230. PubMed ID: 32987068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]