These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21739319)

  • 1. Enhanced light-activated RNA interference using phosphorothioate-based dsRNA precursors of siRNA.
    Kala A; Friedman SH
    Pharm Res; 2011 Dec; 28(12):3050-7. PubMed ID: 21739319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-activated RNA interference using double-stranded siRNA precursors modified using a remarkable regiospecificity of diazo-based photolabile groups.
    Shah S; Jain PK; Kala A; Karunakaran D; Friedman SH
    Nucleic Acids Res; 2009 Jul; 37(13):4508-17. PubMed ID: 19477960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synthesis of tetra-modified RNA for the multidimensional control of gene expression via light-activated RNA interference.
    Kala A; Jain PK; Karunakaran D; Shah S; Friedman SH
    Nat Protoc; 2014 Jan; 9(1):11-20. PubMed ID: 24309973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial cationic oligosaccharide combined with phosphorothioate linkages strongly improves siRNA stability.
    Irie A; Sato K; Hara RI; Wada T; Shibasaki F
    Sci Rep; 2020 Sep; 10(1):14845. PubMed ID: 32908235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contributions of dsRNA structure to Dicer specificity and efficiency.
    Vermeulen A; Behlen L; Reynolds A; Wolfson A; Marshall WS; Karpilow J; Khvorova A
    RNA; 2005 May; 11(5):674-82. PubMed ID: 15811921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning of gene expression using new photolabile groups applied to light activated RNAi.
    Jain PK; Shah S; Friedman SH
    J Am Chem Soc; 2011 Jan; 133(3):440-6. PubMed ID: 21162570
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Imaeda A; Tomoike F; Hayakawa M; Nakamoto K; Kimura Y; Abe N; Abe H
    Nucleosides Nucleotides Nucleic Acids; 2019; 38(12):972-979. PubMed ID: 31298608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Biological Activity of Short Interfering RNAs Having Several Consecutive Amide Internucleoside Linkages.
    Kotikam V; Viel JA; Rozners E
    Chemistry; 2020 Jan; 26(3):685-690. PubMed ID: 31693228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potent RNAi by short RNA triggers.
    Chu CY; Rana TM
    RNA; 2008 Sep; 14(9):1714-9. PubMed ID: 18658119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells.
    Kawasaki H; Taira K
    Nucleic Acids Res; 2003 Jan; 31(2):700-7. PubMed ID: 12527779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.
    Matranga C; Tomari Y; Shin C; Bartel DP; Zamore PD
    Cell; 2005 Nov; 123(4):607-20. PubMed ID: 16271386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila.
    Preall JB; He Z; Gorra JM; Sontheimer EJ
    Curr Biol; 2006 Mar; 16(5):530-5. PubMed ID: 16527750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality matters: stereo-defined phosphorothioate linkages at the termini of small interfering RNAs improve pharmacology in vivo.
    Jahns H; Taneja N; Willoughby JLS; Akabane-Nakata M; Brown CR; Nguyen T; Bisbe A; Matsuda S; Hettinger M; Manoharan RM; Rajeev KG; Maier MA; Zlatev I; Charisse K; Egli M; Manoharan M
    Nucleic Acids Res; 2022 Feb; 50(3):1221-1240. PubMed ID: 34268578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of gene silencing potency and nuclease stability by chemically modified duplex RNA.
    Kubo T; Zhelev Z; Bakalova R; Ohba H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):407-8. PubMed ID: 18029759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DRB4 dsRBD1 drives dsRNA recognition in Arabidopsis thaliana tasi/siRNA pathway.
    Chiliveri SC; Aute R; Rai U; Deshmukh MV
    Nucleic Acids Res; 2017 Aug; 45(14):8551-8563. PubMed ID: 28575480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interference using boranophosphate siRNAs: structure-activity relationships.
    Hall AH; Wan J; Shaughnessy EE; Ramsay Shaw B; Alexander KA
    Nucleic Acids Res; 2004; 32(20):5991-6000. PubMed ID: 15545637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum.
    Hoerter JA; Walter NG
    RNA; 2007 Nov; 13(11):1887-93. PubMed ID: 17804643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does RNA editing affect dsRNA-mediated gene silencing?
    Bass BL
    Cold Spring Harb Symp Quant Biol; 2006; 71():285-92. PubMed ID: 17381308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tolerance of RNA interference toward modifications of the 5' antisense phosphate of small interfering RNA.
    Shah S; Friedman SH
    Oligonucleotides; 2007; 17(1):35-43. PubMed ID: 17461761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically modified symmetric and asymmetric duplex RNAs: an enhanced stability to nuclease degradation and gene silencing effect.
    Kubo T; Zhelev Z; Ohba H; Bakalova R
    Biochem Biophys Res Commun; 2008 Jan; 365(1):54-61. PubMed ID: 17971296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.