These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21739434)
1. Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis. Chen L; Fang B; Giorgianni F; Gingrich JR; Beranova-Giorgianni S Electrophoresis; 2011 Aug; 32(15):1984-91. PubMed ID: 21739434 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. Chen L; Giorgianni F; Beranova-Giorgianni S J Proteome Res; 2010 Jan; 9(1):174-8. PubMed ID: 20044836 [TBL] [Abstract][Full Text] [Related]
3. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line. Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921 [TBL] [Abstract][Full Text] [Related]
4. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139 [TBL] [Abstract][Full Text] [Related]
7. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteome analysis by in-gel isoelectric focusing and tandem mass spectrometry. Beranova-Giorgianni S; Desiderio DM; Giorgianni F Methods Mol Biol; 2009; 519():383-96. PubMed ID: 19381597 [TBL] [Abstract][Full Text] [Related]
9. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods. Chen X; Wu D; Zhao Y; Wong BH; Guo L J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716 [TBL] [Abstract][Full Text] [Related]
10. Thylakoid phosphoproteins: identification of phosphorylation sites. Rokka A; Aro EM; Vener AV Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130 [TBL] [Abstract][Full Text] [Related]
11. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells. Ye X; Li L Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630 [TBL] [Abstract][Full Text] [Related]
12. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. Sardana G; Jung K; Stephan C; Diamandis EP J Proteome Res; 2008 Aug; 7(8):3329-38. PubMed ID: 18578523 [TBL] [Abstract][Full Text] [Related]
14. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. Garbis SD; Tyritzis SI; Roumeliotis T; Zerefos P; Giannopoulou EG; Vlahou A; Kossida S; Diaz J; Vourekas S; Tamvakopoulos C; Pavlakis K; Sanoudou D; Constantinides CA J Proteome Res; 2008 Aug; 7(8):3146-58. PubMed ID: 18553995 [TBL] [Abstract][Full Text] [Related]
16. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782 [TBL] [Abstract][Full Text] [Related]
17. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Hem S; Gherardini PF; Osorio y Fortéa J; Hourdel V; Morales MA; Watanabe R; Pescher P; Kuzyk MA; Smith D; Borchers CH; Zilberstein D; Helmer-Citterich M; Namane A; Späth GF Proteomics; 2010 Nov; 10(21):3868-83. PubMed ID: 20960452 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor. Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319 [TBL] [Abstract][Full Text] [Related]
19. Analytical strategies in mass spectrometry-based phosphoproteomics. Rosenqvist H; Ye J; Jensen ON Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124 [TBL] [Abstract][Full Text] [Related]
20. Identification of p65-associated phosphoproteins by mass spectrometry after on-plate phosphopeptide enrichment using polymer-oxotitanium films. Wang WH; Palumbo AM; Tan YJ; Reid GE; Tepe JJ; Bruening ML J Proteome Res; 2010 Jun; 9(6):3005-15. PubMed ID: 20380454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]