These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21739983)

  • 41. Probing the intrinsic electronic structure of the cubane [4Fe-4S] cluster: nature's favorite cluster for electron transfer and storage.
    Wang XB; Niu S; Yang X; Ibrahim SK; Pickett CJ; Ichiye T; Wang LS
    J Am Chem Soc; 2003 Nov; 125(46):14072-81. PubMed ID: 14611244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes.
    Murakami M; Hong D; Suenobu T; Yamaguchi S; Ogura T; Fukuzumi S
    J Am Chem Soc; 2011 Aug; 133(30):11605-13. PubMed ID: 21702460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.
    Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R
    Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ characterization of cofacial Co(IV) centers in Co
    Brodsky CN; Hadt RG; Hayes D; Reinhart BJ; Li N; Chen LX; Nocera DG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3855-3860. PubMed ID: 28348217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of Pd(OAc)2/pyridine catalyst reoxidation by O2: influence of labile monodentate ligands and identification of a biomimetic mechanism for O2 activation.
    Popp BV; Stahl SS
    Chemistry; 2009; 15(12):2915-22. PubMed ID: 19191243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes.
    Romain S; Vigara L; Llobet A
    Acc Chem Res; 2009 Dec; 42(12):1944-53. PubMed ID: 19908829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanistically Driven Control over Cubane Oxo Cluster Catalysts.
    Song F; Al-Ameed K; Schilling M; Fox T; Luber S; Patzke GR
    J Am Chem Soc; 2019 Jun; 141(22):8846-8857. PubMed ID: 31120246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst.
    Symes MD; Surendranath Y; Lutterman DA; Nocera DG
    J Am Chem Soc; 2011 Apr; 133(14):5174-7. PubMed ID: 21413703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heptanuclear Co
    Xu JH; Guo LY; Su HF; Gao X; Wu XF; Wang WG; Tung CH; Sun D
    Inorg Chem; 2017 Feb; 56(3):1591-1598. PubMed ID: 28117988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of synthetic oxomanganese complexes and the inorganic core of the O2-evolving complex in photosystem II: evaluation of the DFT/B3LYP level of theory.
    Sproviero EM; Gascon JA; McEvoy JP; Brudvig GW; Batista VS
    J Inorg Biochem; 2006 Apr; 100(4):786-800. PubMed ID: 16510187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis, structure, and catalase-like activity of dimanganese(III) complexes of 1,5-bis[(2-hydroxy-5-X-benzyl)(2-pyridylmethyl)amino]pentan-3-ol (X = H, Br, OCH3).
    Biava H; Palopoli C; Duhayon C; Tuchagues JP; Signorella S
    Inorg Chem; 2009 Apr; 48(7):3205-14. PubMed ID: 19271771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bridging-type changes facilitate successive oxidation steps at about 1 V in two binuclear manganese complexes--implications for photosynthetic water-oxidation.
    Magnuson A; Liebisch P; Högblom J; Anderlund MF; Lomoth R; Meyer-Klaucke W; Haumann M; Dau H
    J Inorg Biochem; 2006 Jul; 100(7):1234-43. PubMed ID: 16584782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Water-sensitive low-frequency vibrations of reaction intermediates during S-state cycling in photosynthetic water oxidation.
    Kimura Y; Ishii A; Yamanari T; Ono TA
    Biochemistry; 2005 May; 44(21):7613-22. PubMed ID: 15909976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.
    Kojima Y; Fukuta T; Yamada T; Onyango MS; Bernardo EC; Matsuda H; Yagishita K
    Water Res; 2005 Jan; 39(1):29-36. PubMed ID: 15607161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.
    Hu XL; Piccinin S; Laio A; Fabris S
    ACS Nano; 2012 Dec; 6(12):10497-504. PubMed ID: 23145574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microenvironment Regulation of {Co
    Yao S; Chang LP; Guo GC; Wang YJ; Tian ZY; Guo S; Lu TB; Zhang ZM
    Inorg Chem; 2022 Aug; 61(33):13058-13066. PubMed ID: 35838661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioinspired Trinuclear Copper Catalyst for Water Oxidation with a Turnover Frequency up to 20000 s
    Chen QF; Cheng ZY; Liao RZ; Zhang MT
    J Am Chem Soc; 2021 Dec; 143(47):19761-19768. PubMed ID: 34793144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Artificial photosynthesis challenges: water oxidation at nanostructured interfaces.
    Carraro M; Sartorel A; Toma FM; Puntoriero F; Scandola F; Campagna S; Prato M; Bonchio M
    Top Curr Chem; 2011; 303():121-50. PubMed ID: 21547686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular catalysts that oxidize water to dioxygen.
    Sala X; Romero I; Rodríguez M; Escriche L; Llobet A
    Angew Chem Int Ed Engl; 2009; 48(16):2842-52. PubMed ID: 19165852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.