BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 21740091)

  • 1. Comparison of traditional and novel tableting excipients: physical and compaction properties.
    Hentzschel CM; Sakmann A; Leopold CS
    Pharm Dev Technol; 2012; 17(6):649-53. PubMed ID: 21740091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle.
    Rojas J; Kumar V
    Int J Pharm; 2011 Sep; 416(1):120-8. PubMed ID: 21708237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of silicification on the tableting performance of cellulose ii: a novel multifunctional excipient.
    Rojas J; Kumar V
    Chem Pharm Bull (Tokyo); 2012; 60(5):603-11. PubMed ID: 22689398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of fujicalin, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate.
    Schlack H; Bauer-Brandl A; Schubert R; Becker D
    Drug Dev Ind Pharm; 2001 Sep; 27(8):789-801. PubMed ID: 11699830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs.
    Chen L; He Z; Kunnath KT; Fan S; Wei Y; Ding X; Zheng K; Davé RN
    Int J Pharm; 2019 Feb; 557():354-365. PubMed ID: 30597273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose.
    Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Tableting technology of a dry extract from Solidago virgaurea L. with the use of silicified microcrystalline cellulose (Prosolv) and other selected auxiliary substances].
    Marczyiński Z
    Polim Med; 2009; 39(4):51-60. PubMed ID: 20099736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.
    Badal Tejedor M; Nordgren N; Schuleit M; Rutland MW; Millqvist-Fureby A
    Int J Pharm; 2015; 486(1-2):315-23. PubMed ID: 25841569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride.
    Mužíková J; Kubíčková A
    Acta Pharm; 2016 Sep; 66(3):433-41. PubMed ID: 27383891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression.
    Capece M; Huang Z; Davé R
    J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients.
    Jonat S; Hasenzahl S; Gray A; Schmidt PC
    Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coprocessing of cellulose II with amorphous silicon dioxide: effect of silicification on the powder and tableting properties.
    Rojas J; Kumar V
    Drug Dev Ind Pharm; 2012 Feb; 38(2):209-26. PubMed ID: 22088231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of various excipients as carrier and coating materials for liquisolid compacts.
    Hentzschel CM; Sakmann A; Leopold CS
    Drug Dev Ind Pharm; 2011 Oct; 37(10):1200-7. PubMed ID: 21449826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.
    Hein S; Picker-Freyer KM; Langridge J
    Pharm Dev Technol; 2008; 13(6):523-32. PubMed ID: 18728996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.
    Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effects of particle size on fragmentation during tableting.
    Skelbæk-Pedersen AL; Vilhelmsen TK; Wallaert V; Rantanen J
    Int J Pharm; 2020 Feb; 576():118985. PubMed ID: 31870957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.