BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 2174042)

  • 21. Interaction of valinomycin and monovalent cations with the (Ca2+,Mg2+)-ATPase of skeletal muscle sarcoplasmic reticulum.
    Davidson GA; Berman MC
    J Biol Chem; 1985 Jun; 260(12):7325-9. PubMed ID: 3158656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+ pumping ATPase of cardiac sarcolemma is insensitive to membrane potential produced by K+ and Cl- gradients but requires a source of counter-transportable H+.
    Dixon DA; Haynes DH
    J Membr Biol; 1989 Dec; 112(2):169-83. PubMed ID: 2560063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anion effects on in vitro sarcoplasmic reticulum function. Co-transport of anions with calcium.
    Chu A; Bick RJ; Tate CA; Van Winkle WB; Entman ML
    J Biol Chem; 1983 Sep; 258(17):10543-50. PubMed ID: 6224790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP-dependent calcium transport in rat parotid basolateral membrane vesicles is modulated by membrane potential.
    Ambudkar IS; Baum BJ
    J Membr Biol; 1988 Apr; 102(1):59-69. PubMed ID: 2969416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase.
    Reddy LG; Jones LR; Pace RC; Stokes DL
    J Biol Chem; 1996 Jun; 271(25):14964-70. PubMed ID: 8663079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anionic phospholipids decrease the rate of slippage on the Ca(2+)-ATPase of sarcoplasmic reticulum.
    Dalton KA; Pilot JD; Mall S; East JM; Lee AG
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):431-8. PubMed ID: 10455031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca2+/H+ countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids.
    Hao L; Rigaud JL; Inesi G
    J Biol Chem; 1994 May; 269(19):14268-75. PubMed ID: 8188711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins.
    Lin SH
    J Biol Chem; 1985 Jul; 260(13):7850-6. PubMed ID: 2409077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstitution of sarcoplasmic reticulum Ca2+-ATPase vesicles lacking ion channels and demonstration of electrogenicity of Ca2+-pump.
    Morimoto T; Kasai M
    J Biochem; 1986 Apr; 99(4):1071-80. PubMed ID: 2423509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca2+-ATPase vesicles.
    Navarro J; Essig A
    Biophys J; 1984 Dec; 46(6):709-17. PubMed ID: 6240285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of potassium and magnesium with the high affinity calcium-binding sites of the sarcoplasmic reticulum calcium-ATPase.
    Moutin MJ; Dupont Y
    J Biol Chem; 1991 Mar; 266(9):5580-6. PubMed ID: 1826001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractionation and reconstitution of the sarcoplasmic reticulum Ca2+ pump solubilized and stabilized by CHAPS/lipid micelles.
    Helmke SM; Howard BD
    Membr Biochem; 1987; 7(1):1-22. PubMed ID: 2963203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The role of Ca2+-ATpase and its hydrophobic component in the release of Ca2+ from skeletal muscle sarcoplasmic reticulum].
    Voĭtsitskiĭ VM; Fedorov AN; Kurskiĭ MD; Kucherenko NE; Tugaĭ VA
    Biokhimiia; 1988 Sep; 53(9):1427-32. PubMed ID: 2974308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle.
    Martonosi AN
    Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Sarcoplasmic reticulum Ca2+-ATPase reconstructed into low-permeable proteoliposomes].
    Vinokurov MG; Pechatnikov VA
    Ukr Biokhim Zh (1978); 1988; 60(3):10-5. PubMed ID: 2970704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissociation of Ca2+ from sarcoplasmic reticulum Ca2+-ATPase and changes in fluorescence of optically selected Trp residues. Effects of KCl and NaCl and implications for substeps in Ca2+ dissociation.
    Champeil P; Henao F; de Foresta B
    Biochemistry; 1997 Oct; 36(40):12383-93. PubMed ID: 9315879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The specificity of modulation of sarcoplasmic reticulum Ca(2+)-ATPase by transmembrane Ca2+ gradient].
    Tu YP; Xu H; Yang FY
    Shi Yan Sheng Wu Xue Bao; 1993 Dec; 26(4):441-7. PubMed ID: 8023637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interdependence of H+ and K+ fluxes during the Ca(2+)-pumping activity of sarcoplasmic reticulum vesicles.
    Soler F; Sanchez-Migallon P; Gomez-Fernandez JC; Fernandez-Belda F
    J Bioenerg Biomembr; 1994 Feb; 26(1):127-36. PubMed ID: 8027018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.