These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 21740444)

  • 21. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.
    Kalyanasundaram K; Graetzel M
    Curr Opin Biotechnol; 2010 Jun; 21(3):298-310. PubMed ID: 20439158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial Molecular Photosynthetic Systems: Towards Efficient Photoelectrochemical Water Oxidation.
    Yamamoto M; Tanaka K
    Chempluschem; 2016 Oct; 81(10):1028-1044. PubMed ID: 31964077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolated seven-coordinate Ru(IV) dimer complex with [HOHOH](-) bridging ligand as an intermediate for catalytic water oxidation.
    Duan L; Fischer A; Xu Y; Sun L
    J Am Chem Soc; 2009 Aug; 131(30):10397-9. PubMed ID: 19601625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.
    Reece SY; Hamel JA; Sung K; Jarvi TD; Esswein AJ; Pijpers JJ; Nocera DG
    Science; 2011 Nov; 334(6056):645-8. PubMed ID: 21960528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide.
    Bensaid S; Centi G; Garrone E; Perathoner S; Saracco G
    ChemSusChem; 2012 Mar; 5(3):500-21. PubMed ID: 22431486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light.
    Fan K; Li F; Wang L; Daniel Q; Gabrielsson E; Sun L
    Phys Chem Chem Phys; 2014 Dec; 16(46):25234-40. PubMed ID: 25341620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters.
    Li YH; Xing J; Chen ZJ; Li Z; Tian F; Zheng LR; Wang HF; Hu P; Zhao HJ; Yang HG
    Nat Commun; 2013; 4():2500. PubMed ID: 24042183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting.
    Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM
    ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis.
    Zahran ZN; Tsubonouchi Y; Mohamed EA; Yagi M
    ChemSusChem; 2019 May; 12(9):1775-1793. PubMed ID: 30793506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthesis as a power supply for (bio-)hydrogen production.
    Esper B; Badura A; Rögner M
    Trends Plant Sci; 2006 Nov; 11(11):543-9. PubMed ID: 17029931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-driven water oxidation for solar fuels.
    Young KJ; Martini LA; Milot RL; Snoeberger RC; Batista VS; Schmuttenmaer CA; Crabtree RH; Brudvig GW
    Coord Chem Rev; 2012 Nov; 256(21-22):2503-2520. PubMed ID: 25364029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction.
    Sun J; Liu C; Yang P
    J Am Chem Soc; 2011 Dec; 133(48):19306-9. PubMed ID: 22050218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation.
    Zhang L; Gao Y; Ding X; Yu Z; Sun L
    ChemSusChem; 2014 Oct; 7(10):2801-4. PubMed ID: 25139154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of Hydrogen by Visible Light-Induced Water Splitting with the Use of Semiconductors and Dyes.
    Rao CN; Lingampalli SR
    Small; 2016 Jan; 12(1):16-23. PubMed ID: 26425963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism.
    Renger G
    J Photochem Photobiol B; 2011; 104(1-2):35-43. PubMed ID: 21454089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical hydrogen production from biomass derivatives and water.
    Lu X; Xie S; Yang H; Tong Y; Ji H
    Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solar fuels: thermodynamics, candidates, tactics, and figures of merit.
    McDaniel ND; Bernhard S
    Dalton Trans; 2010 Nov; 39(42):10021-30. PubMed ID: 20714631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis.
    Wasielewski MR
    J Org Chem; 2006 Jul; 71(14):5051-66. PubMed ID: 16808492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.