BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21740486)

  • 41. Full-length RAG1 promotes contact with coding and intersignal sequences in RAG protein complexes bound to recombination signals paired in cis.
    Kumar S; Swanson PC
    Nucleic Acids Res; 2009 Apr; 37(7):2211-26. PubMed ID: 19233873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and characterization of a gain-of-function RAG-1 mutant.
    Kriatchko AN; Anderson DK; Swanson PC
    Mol Cell Biol; 2006 Jun; 26(12):4712-28. PubMed ID: 16738334
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays.
    Hoolehan W; Harris JC; Byrum JN; Simpson DA; Rodgers KK
    Nucleic Acids Res; 2022 Nov; 50(20):11696-11711. PubMed ID: 36370096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The beyond 12/23 restriction is imposed at the nicking and pairing steps of DNA cleavage during V(D)J recombination.
    Drejer-Teel AH; Fugmann SD; Schatz DG
    Mol Cell Biol; 2007 Sep; 27(18):6288-99. PubMed ID: 17636023
    [TBL] [Abstract][Full Text] [Related]  

  • 45. V(D)J recombination frequencies can be profoundly affected by changes in the spacer sequence.
    Montalbano A; Ogwaro KM; Tang A; Matthews AG; Larijani M; Oettinger MA; Feeney AJ
    J Immunol; 2003 Nov; 171(10):5296-304. PubMed ID: 14607931
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A functional analysis of the spacer of V(D)J recombination signal sequences.
    Lee AI; Fugmann SD; Cowell LG; Ptaszek LM; Kelsoe G; Schatz DG
    PLoS Biol; 2003 Oct; 1(1):E1. PubMed ID: 14551903
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints.
    Raghavan SC; Kirsch IR; Lieber MR
    J Biol Chem; 2001 Aug; 276(31):29126-33. PubMed ID: 11390401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Initiation of V(D)J recombination in vivo: role of recombination signal sequences in formation of single and paired double-strand breaks.
    Steen SB; Gomelsky L; Speidel SL; Roth DB
    EMBO J; 1997 May; 16(10):2656-64. PubMed ID: 9184212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy.
    Pavlicek JW; Lyubchenko YL; Chang Y
    Biochemistry; 2008 Oct; 47(43):11204-11. PubMed ID: 18831563
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways.
    Arnal SM; Holub AJ; Salus SS; Roth DB
    Nucleic Acids Res; 2010 May; 38(9):2944-54. PubMed ID: 20139091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Asymmetric DDE (D35E)-like sequences in the RAG proteins: implications for V(D)J recombination and retroviral pathogenesis.
    Dreyfus DH; Jones JF; Gelfand EW
    Med Hypotheses; 1999 Jun; 52(6):545-9. PubMed ID: 10459836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cracking the DNA Code for V(D)J Recombination.
    Kim MS; Chuenchor W; Chen X; Cui Y; Zhang X; Zhou ZH; Gellert M; Yang W
    Mol Cell; 2018 Apr; 70(2):358-370.e4. PubMed ID: 29628308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes.
    Hu J; Zhang Y; Zhao L; Frock RL; Du Z; Meyers RM; Meng FL; Schatz DG; Alt FW
    Cell; 2015 Nov; 163(4):947-59. PubMed ID: 26593423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rag-1 mutations associated with B-cell-negative scid dissociate the nicking and transesterification steps of V(D)J recombination.
    Li W; Chang FC; Desiderio S
    Mol Cell Biol; 2001 Jun; 21(12):3935-46. PubMed ID: 11359901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of RAG protein-V(D)J recombination signal interactions near the site of DNA cleavage by UV cross-linking.
    Eastman QM; Villey IJ; Schatz DG
    Mol Cell Biol; 1999 May; 19(5):3788-97. PubMed ID: 10207102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The central domain of core RAG1 preferentially recognizes single-stranded recombination signal sequence heptamer.
    Peak MM; Arbuckle JL; Rodgers KK
    J Biol Chem; 2003 May; 278(20):18235-40. PubMed ID: 12644467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RAG Represents a Widespread Threat to the Lymphocyte Genome.
    Teng G; Maman Y; Resch W; Kim M; Yamane A; Qian J; Kieffer-Kwon KR; Mandal M; Ji Y; Meffre E; Clark MR; Cowell LG; Casellas R; Schatz DG
    Cell; 2015 Aug; 162(4):751-65. PubMed ID: 26234156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling of the RAG reaction mechanism.
    Askary A; Shimazaki N; Bayat N; Lieber MR
    Cell Rep; 2014 Apr; 7(2):307-315. PubMed ID: 24703851
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14;18) chromosomal translocation.
    Nambiar M; Raghavan SC
    J Biol Chem; 2012 Mar; 287(12):8688-701. PubMed ID: 22275374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination.
    Hirokawa S; Chure G; Belliveau NM; Lovely GA; Anaya M; Schatz DG; Baltimore D; Phillips R
    Nucleic Acids Res; 2020 Jul; 48(12):6726-6739. PubMed ID: 32449932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.