BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21740560)

  • 1. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems.
    Calviño M; Bruggmann R; Messing J
    BMC Genomics; 2011 Jul; 12():356. PubMed ID: 21740560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
    Bihmidine S; Julius BT; Dweikat I; Braun DM
    Plant Signal Behav; 2016; 11(1):e1117721. PubMed ID: 26619184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem sugar accumulation in sweet sorghum - activity and expression of sucrose metabolizing enzymes and sucrose transporters.
    Qazi HA; Paranjpe S; Bhargava S
    J Plant Physiol; 2012 Apr; 169(6):605-13. PubMed ID: 22325624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of MicroRNA169 gene copies in genomes of flowering plants through positional information.
    Calviño M; Messing J
    Genome Biol Evol; 2013; 5(2):402-17. PubMed ID: 23348041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane.
    Zanca AS; Vicentini R; Ortiz-Morea FA; Del Bem LE; da Silva MJ; Vincentz M; Nogueira FT
    BMC Plant Biol; 2010 Nov; 10():260. PubMed ID: 21092324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum.
    Mizuno H; Kasuga S; Kawahigashi H
    BMC Plant Biol; 2018 Jan; 18(1):2. PubMed ID: 29298675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum.
    Zhang L; Zheng Y; Jagadeeswaran G; Li Y; Gowdu K; Sunkar R
    Genomics; 2011 Dec; 98(6):460-8. PubMed ID: 21907786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor).
    Zheng LY; Guo XS; He B; Sun LJ; Peng Y; Dong SS; Liu TF; Jiang S; Ramachandran S; Liu CM; Jing HC
    Genome Biol; 2011 Nov; 12(11):R114. PubMed ID: 22104744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism.
    Cooper EA; Brenton ZW; Flinn BS; Jenkins J; Shu S; Flowers D; Luo F; Wang Y; Xia P; Barry K; Daum C; Lipzen A; Yoshinaga Y; Schmutz J; Saski C; Vermerris W; Kresovich S
    BMC Genomics; 2019 May; 20(1):420. PubMed ID: 31133004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.
    Sui N; Yang Z; Liu M; Wang B
    BMC Genomics; 2015 Jul; 16(1):534. PubMed ID: 26186930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems.
    Fujimoto M; Sazuka T; Oda Y; Kawahigashi H; Wu J; Takanashi H; Ohnishi T; Yoneda JI; Ishimori M; Kajiya-Kanegae H; Hibara KI; Ishizuna F; Ebine K; Ueda T; Tokunaga T; Iwata H; Matsumoto T; Kasuga S; Yonemaru JI; Tsutsumi N
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8783-E8792. PubMed ID: 30150370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.
    Ghate T; Deshpande S; Bhargava S
    Plant Biol (Stuttg); 2017 May; 19(3):396-405. PubMed ID: 28032438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sweet Sorghum Originated through Selection of
    Zhang LM; Leng CY; Luo H; Wu XY; Liu ZQ; Zhang YM; Zhang H; Xia Y; Shang L; Liu CM; Hao DY; Zhou YH; Chu CC; Cai HW; Jing HC
    Plant Cell; 2018 Oct; 30(10):2286-2307. PubMed ID: 30309900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing.
    Wang H; Zhang C; Dou Y; Yu B; Liu Y; Heng-Moss TM; Lu G; Wachholtz M; Bradshaw JD; Twigg P; Scully E; Palmer N; Sarath G
    Gene; 2017 Jan; 599():68-77. PubMed ID: 27838454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection.
    Wang ML; Zhu C; Barkley NA; Chen Z; Erpelding JE; Murray SC; Tuinstra MR; Tesso T; Pederson GA; Yu J
    Theor Appl Genet; 2009 Dec; 120(1):13-23. PubMed ID: 19760215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums.
    Shakoor N; Nair R; Crasta O; Morris G; Feltus A; Kresovich S
    BMC Plant Biol; 2014 Jan; 14():35. PubMed ID: 24456189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.