These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21740582)
1. Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species. Sikulu M; Dowell KM; Hugo LE; Wirtz RA; Michel K; Peiris KH; Moore S; Killeen GF; Dowell FE Malar J; 2011 Jul; 10():186. PubMed ID: 21740582 [TBL] [Abstract][Full Text] [Related]
2. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy. Mayagaya VS; Ntamatungiro AJ; Moore SJ; Wirtz RA; Dowell FE; Maia MF Parasit Vectors; 2015 Jan; 8():60. PubMed ID: 25623484 [TBL] [Abstract][Full Text] [Related]
4. Effects of sample preservation methods and duration of storage on the performance of mid-infrared spectroscopy for predicting the age of malaria vectors. Mgaya JN; Siria DJ; Makala FE; Mgando JP; Vianney JM; Mwanga EP; Okumu FO Parasit Vectors; 2022 Aug; 15(1):281. PubMed ID: 35933384 [TBL] [Abstract][Full Text] [Related]
6. Short report: The effect of preservation methods on predicting mosquito age by near infrared spectroscopy. Dowell FE; Noutcha AE; Michel K Am J Trop Med Hyg; 2011 Dec; 85(6):1093-6. PubMed ID: 22144450 [TBL] [Abstract][Full Text] [Related]
7. Non-destructive determination of age and species of Anopheles gambiae s.l. using near-infrared spectroscopy. Mayagaya VS; Michel K; Benedict MQ; Killeen GF; Wirtz RA; Ferguson HM; Dowell FE Am J Trop Med Hyg; 2009 Oct; 81(4):622-30. PubMed ID: 19815877 [TBL] [Abstract][Full Text] [Related]
8. Detection of Plasmodium falciparum infected Anopheles gambiae using near-infrared spectroscopy. Maia MF; Kapulu M; Muthui M; Wagah MG; Ferguson HM; Dowell FE; Baldini F; Ranford-Cartwright L Malar J; 2019 Mar; 18(1):85. PubMed ID: 30890179 [TBL] [Abstract][Full Text] [Related]
9. Age grading An. gambiae and An. arabiensis using near infrared spectra and artificial neural networks. Milali MP; Sikulu-Lord MT; Kiware SS; Dowell FE; Corliss GF; Povinelli RJ PLoS One; 2019; 14(8):e0209451. PubMed ID: 31412028 [TBL] [Abstract][Full Text] [Related]
10. The influence of physiological status on age prediction of Anopheles arabiensis using near infra-red spectroscopy. Ntamatungiro AJ; Mayagaya VS; Rieben S; Moore SJ; Dowell FE; Maia MF Parasit Vectors; 2013 Oct; 6(1):298. PubMed ID: 24499515 [TBL] [Abstract][Full Text] [Related]
11. Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae. Krajacich BJ; Meyers JI; Alout H; Dabiré RK; Dowell FE; Foy BD Parasit Vectors; 2017 Nov; 10(1):552. PubMed ID: 29116006 [TBL] [Abstract][Full Text] [Related]
12. Near-infrared spectroscopy as a complementary age grading and species identification tool for African malaria vectors. Sikulu M; Killeen GF; Hugo LE; Ryan PA; Dowell KM; Wirtz RA; Moore SJ; Dowell FE Parasit Vectors; 2010 Jun; 3():49. PubMed ID: 20525305 [TBL] [Abstract][Full Text] [Related]
13. Identification of the main malaria vectors in the Anopheles gambiae species complex using a TaqMan real-time PCR assay. Bass C; Williamson MS; Wilding CS; Donnelly MJ; Field LM Malar J; 2007 Nov; 6():155. PubMed ID: 18034887 [TBL] [Abstract][Full Text] [Related]
14. Ability of near-infrared spectroscopy and chemometrics to predict the age of mosquitoes reared under different conditions. Ong OTW; Kho EA; Esperança PM; Freebairn C; Dowell FE; Devine GJ; Churcher TS Parasit Vectors; 2020 Mar; 13(1):160. PubMed ID: 32228670 [TBL] [Abstract][Full Text] [Related]
15. An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra. Milali MP; Kiware SS; Govella NJ; Okumu F; Bansal N; Bozdag S; Charlwood JD; Maia MF; Ogoma SB; Dowell FE; Corliss GF; Sikulu-Lord MT; Povinelli RJ PLoS One; 2020; 15(6):e0234557. PubMed ID: 32555660 [TBL] [Abstract][Full Text] [Related]
16. A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. II. Validation of species distribution and seasonal variations. Lunde TM; Balkew M; Korecha D; Gebre-Michael T; Massebo F; Sorteberg A; Lindtjørn B Malar J; 2013 Feb; 12():78. PubMed ID: 23442727 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Degefa T; Yewhalaw D; Zhou G; Atieli H; Githeko AK; Yan G Malar J; 2020 May; 19(1):174. PubMed ID: 32381009 [TBL] [Abstract][Full Text] [Related]
18. Composition and genetics of malaria vector populations in the Central African Republic. Ndiath MO; Eiglmeier K; Olé Sangba ML; Holm I; Kazanji M; Vernick KD Malar J; 2016 Jul; 15(1):387. PubMed ID: 27456078 [TBL] [Abstract][Full Text] [Related]
19. First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: recent introduction or sampling bias? Gordicho V; Vicente JL; Sousa CA; Caputo B; Pombi M; Dinis J; Seixas G; Palsson K; Weetman D; Rodrigues A; della Torre A; Pinto J Malar J; 2014 Nov; 13():423. PubMed ID: 25370807 [TBL] [Abstract][Full Text] [Related]
20. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Degefa T; Yewhalaw D; Zhou G; Lee MC; Atieli H; Githeko AK; Yan G Malar J; 2017 Nov; 16(1):443. PubMed ID: 29110670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]