These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and molecular modelling studies of novel carbapeptide analogs for inhibition of HIV-1 protease. Pawar SA; Jabgunde AM; Govender P; Maguire GE; Kruger HG; Parboosing R; Soliman ME; Sayed Y; Dhavale DD; Govender T Eur J Med Chem; 2012 Jul; 53():13-21. PubMed ID: 22542107 [TBL] [Abstract][Full Text] [Related]
11. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations. Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026 [TBL] [Abstract][Full Text] [Related]
13. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations. Aruksakunwong O; Wittayanarakul K; Sompornpisut P; Sanghiran V; Parasuk V; Hannongbua S J Mol Graph Model; 2006 Nov; 25(3):324-32. PubMed ID: 16504560 [TBL] [Abstract][Full Text] [Related]
14. Linear and cyclic glycopeptide as HIV protease inhibitors. Pawar SA; Jabgunde AM; Maguire GE; Kruger HG; Sayed Y; Soliman ME; Dhavale DD; Govender T Eur J Med Chem; 2013 Feb; 60():144-54. PubMed ID: 23291117 [TBL] [Abstract][Full Text] [Related]
15. Insights into effect of the Asp25/Asp25' protonation states on binding of inhibitors Amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations. Yu YX; Wang W; Sun HB; Zhang LL; Wu SL; Liu WT SAR QSAR Environ Res; 2021 Aug; 32(8):615-641. PubMed ID: 34157882 [TBL] [Abstract][Full Text] [Related]
16. Ionization state of the catalytic dyad Asp25/25' in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis. Torbeev VY; Kent SB Org Biomol Chem; 2012 Aug; 10(30):5887-91. PubMed ID: 22659831 [TBL] [Abstract][Full Text] [Related]
17. Conformational study of the PCU cage monopeptide: a key role of some force-field parameters. Bisetty K; Perez JJ J Phys Chem B; 2009 Apr; 113(15):5234-8. PubMed ID: 19309143 [TBL] [Abstract][Full Text] [Related]
18. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. Tzoupis H; Leonis G; Avramopoulos A; Mavromoustakos T; Papadopoulos MG J Phys Chem B; 2014 Aug; 118(32):9538-52. PubMed ID: 25036111 [TBL] [Abstract][Full Text] [Related]
19. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling. Frutos S; Rodriguez-Mias RA; Madurga S; Collinet B; Reboud-Ravaux M; Ludevid D; Giralt E Biopolymers; 2007; 88(2):164-73. PubMed ID: 17236209 [TBL] [Abstract][Full Text] [Related]
20. Interactions of the dimeric triad of HIV-1 aspartyl protease with inhibitors. Mager PP; De Clercq E; Froeyen M; Reinhardt R Drug Des Discov; 2003; 18(2-3):53-64. PubMed ID: 14675943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]