These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21741169)

  • 21. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerobic treatment of inhibitory wastewater using a high-pressure bioreactor with membrane separation.
    Male PC; Pretoruis WA
    Water Sci Technol; 2001; 43(11):51-8. PubMed ID: 11443986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of bioaugmentation of activated sludge with white-rot fungi on olive mill wastewater detoxification.
    Dhouib A; Ellouz M; Aloui F; Sayadi S
    Lett Appl Microbiol; 2006 Apr; 42(4):405-11. PubMed ID: 16599996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective sludge discharge as the determining factor in SBR aerobic granulation: numerical modelling and experimental verification.
    Li AJ; Li XY
    Water Res; 2009 Aug; 43(14):3387-96. PubMed ID: 19505707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-culture aerobic granules with Acinetobacter calcoaceticus.
    Adav SS; Lee DJ
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):551-7. PubMed ID: 18193420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor.
    Schwarzenbeck N; Borges JM; Wilderer PA
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):711-8. PubMed ID: 15558277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors.
    Show KY; Wang Y; Foong SF; Tay JH
    Water Res; 2004 May; 38(9):2292-303. PubMed ID: 15142790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V; Hoffmann J; Růzicka J; Sergejevová M
    J Environ Manage; 2005 Mar; 74(4):293-304. PubMed ID: 15737454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis.
    Adav SS; Chen MY; Lee DJ; Ren NQ
    Biotechnol Bioeng; 2007 Apr; 96(5):844-52. PubMed ID: 17001631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors.
    Papadimitriou CA; Samaras P; Sakellaropoulos GP
    Bioresour Technol; 2009 Jan; 100(1):31-7. PubMed ID: 18650084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorus removal and greenhouse gas N2O emission in a lime-induced aerobic sludge granule process.
    Wu XL; Guan YT; Zhang X; Huang X; Qian Y
    Environ Technol; 2002 Jun; 23(6):677-84. PubMed ID: 12118619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The anaerobic treatment of sewage and granule formation in upflow anaerobic sludge blanket reactor.
    Makni H; Bettaieb F; Dhaouadi H; M'Henni F; Bakhrouf A
    Environ Technol; 2006 Sep; 27(9):1031-6. PubMed ID: 17067129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium.
    Hailei W; Ping L; Qianlong J; Ge Q
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2687-97. PubMed ID: 24077728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatability and kinetics studies of mesophilic aerobic biodegradation of high oil and grease pet food wastewater.
    Liu VL; Nakhla G; Bassi A
    J Hazard Mater; 2004 Aug; 112(1-2):87-94. PubMed ID: 15225934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    J Hazard Mater; 2010 Jan; 173(1-3):783-8. PubMed ID: 19783362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of organic compounds from coking wastewater with UASB reactor.
    Lu Y; Wang Y; Shen SF; Yan LH; Zhai SJ; Chen BJ; Zhang JF; Zhou SF
    Water Sci Technol; 2010; 62(8):1784-90. PubMed ID: 20962393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the properties of aerobic sludge granules as hydrogels.
    Seviour T; Pijuan M; Nicholson T; Keller J; Yuan Z
    Biotechnol Bioeng; 2009 Apr; 102(5):1483-93. PubMed ID: 18988268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-stage UASB design enables activated-sludge free treatment of easily biodegradable wastewater.
    Diamantis V; Aivasidis A
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):287-92. PubMed ID: 19418073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation.
    Juang RS; Huang WC; Hsu YH
    J Hazard Mater; 2009 May; 164(1):46-52. PubMed ID: 18774222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.