These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21741238)

  • 1. Evaluation of FKBP and DHFR based destabilizing domains in Saccharomyces cerevisiae.
    Rakhit R; Edwards SR; Iwamoto M; Wandless TJ
    Bioorg Med Chem Lett; 2011 Sep; 21(17):4965-8. PubMed ID: 21741238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.
    Edwards SR; Wandless TJ
    J Biol Chem; 2007 May; 282(18):13395-401. PubMed ID: 17350953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A yeast sensor of ligand binding.
    Tucker CL; Fields S
    Nat Biotechnol; 2001 Nov; 19(11):1042-6. PubMed ID: 11689849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functions of FKBP12 and mitochondrial cyclophilin active site residues in vitro and in vivo in Saccharomyces cerevisiae.
    Dolinski K; Scholz C; Muir RS; Rospert S; Schmid FX; Cardenas ME; Heitman J
    Mol Biol Cell; 1997 Nov; 8(11):2267-80. PubMed ID: 9362068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between ligand-receptor affinity and the transcription readout in a yeast three-hybrid system.
    de Felipe KS; Carter BT; Althoff EA; Cornish VW
    Biochemistry; 2004 Aug; 43(32):10353-63. PubMed ID: 15301533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making drug addicts out of yeast.
    Vidan S; Snyder M
    Nat Biotechnol; 2001 Nov; 19(11):1022-3. PubMed ID: 11689844
    [No Abstract]   [Full Text] [Related]  

  • 7. FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation.
    Arévalo-Rodríguez M; Pan X; Boeke JD; Heitman J
    Eukaryot Cell; 2004 Oct; 3(5):1287-96. PubMed ID: 15470257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a yeast protein fragment complementation assay (PCA) system using dihydrofolate reductase (DHFR) with specific additives.
    Shibasaki S; Sakata K; Ishii J; Kondo A; Ueda M
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):735-43. PubMed ID: 18670770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility.
    Sormani R; Yao L; Menand B; Ennar N; Lecampion C; Meyer C; Robaglia C
    BMC Plant Biol; 2007 Jun; 7():26. PubMed ID: 17543119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a conditional degradation signal in yeast and mammalian cells.
    Lévy F; Johnston JA; Varshavsky A
    Eur J Biochem; 1999 Jan; 259(1-2):244-52. PubMed ID: 9914499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-inducible degron: a method for constructing temperature-sensitive mutants.
    Dohmen RJ; Wu P; Varshavsky A
    Science; 1994 Mar; 263(5151):1273-6. PubMed ID: 8122109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules.
    Banaszynski LA; Chen LC; Maynard-Smith LA; Ooi AG; Wandless TJ
    Cell; 2006 Sep; 126(5):995-1004. PubMed ID: 16959577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering small molecule specificity in nearly identical cellular environments.
    Sellmyer MA; Stankunas K; Briesewitz R; Crabtree GR; Wandless TJ
    Bioorg Med Chem Lett; 2007 May; 17(10):2703-5. PubMed ID: 17383876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Cryptosporidium parvum dihydrofolate reductase inhibitors by complementation in Saccharomyces cerevisiae.
    Brophy VH; Vasquez J; Nelson RG; Forney JR; Rosowsky A; Sibley CH
    Antimicrob Agents Chemother; 2000 Apr; 44(4):1019-28. PubMed ID: 10722506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amino terminus of the F1-ATPase beta-subunit precursor functions as an intramolecular chaperone to facilitate mitochondrial protein import.
    Hájek P; Koh JY; Jones L; Bedwell DM
    Mol Cell Biol; 1997 Dec; 17(12):7169-77. PubMed ID: 9372949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor.
    Bastidas RJ; Shertz CA; Lee SC; Heitman J; Cardenas ME
    Eukaryot Cell; 2012 Mar; 11(3):270-81. PubMed ID: 22210828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An orthogonal dexamethasone-trimethoprim yeast three-hybrid system.
    Gallagher SS; Miller LW; Cornish VW
    Anal Biochem; 2007 Apr; 363(1):160-2. PubMed ID: 17291441
    [No Abstract]   [Full Text] [Related]  

  • 19. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
    Xu T; Johnson CA; Gestwicki JE; Kumar A
    Nat Protoc; 2010 Nov; 5(11):1831-43. PubMed ID: 21030958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity.
    Geitner AJ; Schmid FX
    J Mol Biol; 2012 Jul; 420(4-5):335-49. PubMed ID: 22542528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.