BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21741406)

  • 21. The effects of mTOR or Vps34-mediated autophagy on methylmercury-induced neuronal apoptosis in rat cerebral cortex.
    Ni L; Wei Y; Pan J; Li X; Xu B; Deng Y; Yang T; Liu W
    Food Chem Toxicol; 2021 Sep; 155():112386. PubMed ID: 34242720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuroimmunological effects of exposure to methylmercury forms in the Sprague-Dawley rats. Activation of the hypothalamic-pituitary-adrenal axis and lymphocyte responsiveness.
    Ortega HG; Lopez M; Takaki A; Huang QH; Arimura A; Salvaggio JE
    Toxicol Ind Health; 1997; 13(1):57-66. PubMed ID: 9098950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylmercury inhibits electron transport chain activity and induces cytochrome c release in cerebellum mitochondria.
    Mori N; Yasutake A; Marumoto M; Hirayama K
    J Toxicol Sci; 2011 Jun; 36(3):253-9. PubMed ID: 21628953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inherited effects of low-dose exposure to methylmercury in neural stem cells.
    Bose R; Onishchenko N; Edoff K; Janson Lang AM; Ceccatelli S
    Toxicol Sci; 2012 Dec; 130(2):383-90. PubMed ID: 22918959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis.
    Chung YP; Yen CC; Tang FC; Lee KI; Liu SH; Wu CC; Hsieh SS; Su CC; Kuo CY; Chen YW
    Toxicology; 2019 Sep; 425():152245. PubMed ID: 31330229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylmercury exposure downregulates the expression of Racl and leads to neuritic degeneration and ultimately apoptosis in cerebrocortical neurons.
    Fujimura M; Usuki F; Sawada M; Rostene W; Godefroy D; Takashima A
    Neurotoxicology; 2009 Jan; 30(1):16-22. PubMed ID: 19000711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylmercury induces pancreatic beta-cell apoptosis and dysfunction.
    Chen YW; Huang CF; Tsai KS; Yang RS; Yen CC; Yang CY; Lin-Shiau SY; Liu SH
    Chem Res Toxicol; 2006 Aug; 19(8):1080-5. PubMed ID: 16918248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methylmercury induces caspase-dependent apoptosis and autophagy in human neural stem cells.
    Chang SH; Lee HJ; Kang B; Yu KN; Minai-Tehrani A; Lee S; Kim SU; Cho MH
    J Toxicol Sci; 2013; 38(6):823-31. PubMed ID: 24213001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associations among exposure to methylmercury, reduced Reelin expression, and gender in the cerebellum of developing mice.
    Biamonte F; Latini L; Giorgi FS; Zingariello M; Marino R; De Luca R; D'Ilio S; Majorani C; Petrucci F; Violante N; Senofonte O; Molinari M; Keller F
    Neurotoxicology; 2014 Dec; 45():67-80. PubMed ID: 25305366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats.
    Heimfarth L; Delgado J; Mingori MR; Moresco KS; Pureur RP; Gelain DP; Moreira JCF
    Toxicol Lett; 2018 Mar; 284():161-169. PubMed ID: 29258870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.
    Dos Santos AA; López-Granero C; Farina M; Rocha JBT; Bowman AB; Aschner M
    Food Chem Toxicol; 2018 Mar; 113():328-336. PubMed ID: 29428217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C; Duckworth J; Hermanson O; Ceccatelli S
    J Neurochem; 2006 Apr; 97(1):69-78. PubMed ID: 16524380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells.
    Cuello S; Goya L; Madrid Y; Campuzano S; Pedrero M; Bravo L; Cámara C; Ramos S
    Food Chem Toxicol; 2010 May; 48(5):1405-11. PubMed ID: 20226830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release.
    Zhang Y; Bhavnani BR
    BMC Neurosci; 2005 Feb; 6():13. PubMed ID: 15730564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hippocampal neurons exposed to the environmental contaminants methylmercury and polychlorinated biphenyls undergo cell death via parallel activation of calpains and lysosomal proteases.
    Tofighi R; Johansson C; Goldoni M; Ibrahim WN; Gogvadze V; Mutti A; Ceccatelli S
    Neurotox Res; 2011 Jan; 19(1):183-94. PubMed ID: 20169435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.
    Shanker G; Syversen T; Aschner JL; Aschner M
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):11-22. PubMed ID: 15950756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low level prenatal exposure to methylmercury disrupts neuronal migration in the developing rat cerebral cortex.
    Guo BQ; Yan CH; Cai SZ; Yuan XB; Shen XM
    Toxicology; 2013 Feb; 304():57-68. PubMed ID: 23220560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase.
    Franco JL; Posser T; Dunkley PR; Dickson PW; Mattos JJ; Martins R; Bainy AC; Marques MR; Dafre AL; Farina M
    Free Radic Biol Med; 2009 Aug; 47(4):449-57. PubMed ID: 19450679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of oxidative stress and the mitochondrial permeability transition in methylmercury cytotoxicity.
    Polunas M; Halladay A; Tjalkens RB; Philbert MA; Lowndes H; Reuhl K
    Neurotoxicology; 2011 Oct; 32(5):526-34. PubMed ID: 21871920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protective effects of lycopene against methylmercury-induced neurotoxicity in cultured rat cerebellar granule neurons.
    Qu M; Nan X; Gao Z; Guo B; Liu B; Chen Z
    Brain Res; 2013 Dec; 1540():92-102. PubMed ID: 24120987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.