These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1094 related articles for article (PubMed ID: 21741417)
1. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
2. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Katahira S; Mizuike A; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564 [TBL] [Abstract][Full Text] [Related]
3. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
4. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
5. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
6. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Katahira S; Fujita Y; Mizuike A; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Sep; 70(9):5407-14. PubMed ID: 15345427 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
8. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
9. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Hasunuma T; Hori Y; Sakamoto T; Ochiai M; Hatanaka H; Kondo A Microb Cell Fact; 2014 Oct; 13():145. PubMed ID: 25306430 [TBL] [Abstract][Full Text] [Related]
10. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
11. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014 [TBL] [Abstract][Full Text] [Related]
12. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. Mert MJ; la Grange DC; Rose SH; van Zyl WH J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525 [TBL] [Abstract][Full Text] [Related]
13. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. Guo C; Jiang N World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545 [TBL] [Abstract][Full Text] [Related]
14. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
15. Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing β-xylosidase. Fujii T; Yu G; Matsushika A; Kurita A; Yano S; Murakami K; Sawayama S Biosci Biotechnol Biochem; 2011; 75(6):1140-6. PubMed ID: 21670522 [TBL] [Abstract][Full Text] [Related]
16. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains. Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859 [TBL] [Abstract][Full Text] [Related]
17. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Hasunuma T; Sung KM; Sanda T; Yoshimura K; Matsuda F; Kondo A Appl Microbiol Biotechnol; 2011 May; 90(3):997-1004. PubMed ID: 21246355 [TBL] [Abstract][Full Text] [Related]
18. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783 [TBL] [Abstract][Full Text] [Related]
19. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase. Saitoh S; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701 [TBL] [Abstract][Full Text] [Related]