BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1219 related articles for article (PubMed ID: 21741417)

  • 1. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Katahira S; Fujita Y; Mizuike A; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Sep; 70(9):5407-14. PubMed ID: 15345427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses.
    Hasunuma T; Hori Y; Sakamoto T; Ochiai M; Hatanaka H; Kondo A
    Microb Cell Fact; 2014 Oct; 13():145. PubMed ID: 25306430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
    Guo C; Jiang N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y; Park JY; Shiroma R; Tokuyasu K
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing β-xylosidase.
    Fujii T; Yu G; Matsushika A; Kurita A; Yano S; Murakami K; Sawayama S
    Biosci Biotechnol Biochem; 2011; 75(6):1140-6. PubMed ID: 21670522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae.
    Hasunuma T; Sung KM; Sanda T; Yoshimura K; Matsuda F; Kondo A
    Appl Microbiol Biotechnol; 2011 May; 90(3):997-1004. PubMed ID: 21246355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.