These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21741454)

  • 21. Luminance-contrast properties of contour-shape processing revealed through the shape-frequency after-effect.
    Gheorghiu E; Kingdom FA
    Vision Res; 2006 Oct; 46(21):3603-15. PubMed ID: 16769101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.
    Gharat A; Baker CL
    J Neurosci; 2017 Jan; 37(4):998-1013. PubMed ID: 28123031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processing of kinetic boundaries in macaque V4.
    Mysore SG; Vogels R; Raiguel SE; Orban GA
    J Neurophysiol; 2006 Mar; 95(3):1864-80. PubMed ID: 16267116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat.
    Huang L; Shou T; Chen X; Yu H; Sun C; Liang Z
    Neuroimage; 2006 Sep; 32(3):1365-74. PubMed ID: 16798018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The development of luminance- and texture-defined form perception during the school-aged years.
    Bertone A; Hanck J; Guy J; Cornish K
    Neuropsychologia; 2010 Aug; 48(10):3080-5. PubMed ID: 20600190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex.
    Villeneuve MY; Vanni MP; Casanova C
    Neuroscience; 2009 Dec; 164(3):1320-33. PubMed ID: 19712725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The spatial-frequency characteristics of the neuronal receptor fields in area 21 of the cat visual cortex].
    Gabibov IM; Baĭlo LD
    Fiziol Zh SSSR Im I M Sechenova; 1992 May; 78(5):1-8. PubMed ID: 1334869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural Processing of Second-Order Motion in the Suprasylvian Cortex of the Cat.
    Bussières L; Casanova C
    Cereb Cortex; 2017 Feb; 27(2):1347-1357. PubMed ID: 26733532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms underlying the representation of angles embedded within contour stimuli in area V2 of macaque monkeys.
    Ito M; Goda N
    Eur J Neurosci; 2011 Jan; 33(1):130-42. PubMed ID: 21091803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global contour shapes are coded differently from their local components.
    Bell J; Kingdom FA
    Vision Res; 2009 Jun; 49(13):1702-10. PubMed ID: 19375448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurons in monkey visual cortex detect lines defined by coherent motion of dots.
    Peterhans E; Heider B; Baumann R
    Eur J Neurosci; 2005 Feb; 21(4):1091-100. PubMed ID: 15787714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macaque V1 neurons can signal 'illusory' contours.
    Grosof DH; Shapley RM; Hawken MJ
    Nature; 1993 Oct; 365(6446):550-2. PubMed ID: 8413610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat.
    Romo PA; Wang C; Zeater N; Solomon SG; Dreher B
    J Neurophysiol; 2011 Oct; 106(4):1688-712. PubMed ID: 21715668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radial biases in the processing of motion and motion-defined contours by human visual cortex.
    Clifford CW; Mannion DJ; McDonald JS
    J Neurophysiol; 2009 Nov; 102(5):2974-81. PubMed ID: 19759326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peaked encoding of relative luminance in macaque areas V1 and V2.
    Peng X; Van Essen DC
    J Neurophysiol; 2005 Mar; 93(3):1620-32. PubMed ID: 15525807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of adapting speed on speed and contrast coding in the primary visual cortex of the cat.
    Hietanen MA; Crowder NA; Price NS; Ibbotson MR
    J Physiol; 2007 Oct; 584(Pt 2):451-62. PubMed ID: 17702823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.
    Duong T; Freeman RD
    J Neurophysiol; 2007 Jul; 98(1):187-95. PubMed ID: 17428911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Receptive field properties and sensitivity to edges defined by motion in the postero-lateral lateral suprasylvian (PLLS) area of the cat.
    Robitaille N; Lepore F; Bacon BA; Ellemberg D; Guillemot JP
    Brain Res; 2008 Jan; 1187():82-94. PubMed ID: 18005943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat.
    Zhou YX; Baker CL
    J Neurophysiol; 1996 Mar; 75(3):1038-50. PubMed ID: 8867116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do cortical neurons process luminance or contrast to encode surface properties?
    Vladusich T; Lucassen MP; Cornelissen FW
    J Neurophysiol; 2006 Apr; 95(4):2638-49. PubMed ID: 16381807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.