These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21741666)

  • 1. Responses of four Indo-West Pacific seagrass species to shading.
    Collier CJ; Waycott M; Ospina AG
    Mar Pollut Bull; 2012; 65(4-9):342-54. PubMed ID: 21741666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited toxicity of NH(x) pulses on an early and late successional tropical seagrass species: interactions with pH and light level.
    Christianen MJ; van der Heide T; Bouma TJ; Roelofs JG; van Katwijk MM; Lamers LP
    Aquat Toxicol; 2011 Jul; 104(1-2):73-9. PubMed ID: 21536012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses.
    Collier CJ; Langlois L; Ow Y; Johansson C; Giammusso M; Adams MP; O'Brien KR; Uthicke S
    New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seagrasses in tropical Australia, productive and abundant for decades decimated overnight.
    Pollard PC; Greenway M
    J Biosci; 2013 Mar; 38(1):157-66. PubMed ID: 23385823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining light stress responses for a tropical multi-species seagrass assemblage.
    Statton J; McMahon K; Lavery P; Kendrick GA
    Mar Pollut Bull; 2018 Mar; 128():508-518. PubMed ID: 29571402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica.
    Ruiz JM; Romero J
    Mar Pollut Bull; 2003 Dec; 46(12):1523-33. PubMed ID: 14643778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new mechanistic understanding of light-limitation in the seagrass Zostera muelleri.
    Davey PA; Pernice M; Ashworth J; Kuzhiumparambil U; Szabó M; Dolferus R; Ralph PJ
    Mar Environ Res; 2018 Mar; 134():55-67. PubMed ID: 29307464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress.
    Sandoval-Gil JM; Ruiz JM; Marín-Guirao L; Bernardeau-Esteller J; Sánchez-Lizaso JL
    Mar Environ Res; 2014 Apr; 95():39-61. PubMed ID: 24411277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.
    Collier CJ; Ow YX; Langlois L; Uthicke S; Johansson CL; O'Brien KR; Hrebien V; Adams MP
    Front Plant Sci; 2017; 8():1446. PubMed ID: 28878790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytotoxic effects of Cu, Cd and Zn on the seagrass Thalassia hemprichii and metal accumulation in plants growing in Xincun Bay, Hainan, China.
    Zheng J; Gu XQ; Zhang TJ; Liu HH; Ou QJ; Peng CL
    Ecotoxicology; 2018 Jul; 27(5):517-526. PubMed ID: 29556939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of the Mediterranean seagrass Posidonia oceanica to hypersaline stress duration and recovery.
    Marín-Guirao L; Sandoval-Gil JM; Bernardeau-Esteller J; Ruíz JM; Sánchez-Lizaso JL
    Mar Environ Res; 2013 Mar; 84():60-75. PubMed ID: 23306019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource translocation within seagrass clones: allometric scaling to plant size and productivity.
    Marbà N; Hemminga MA; Duarte CM
    Oecologia; 2006 Dec; 150(3):362-72. PubMed ID: 16944245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory investigation of the acoustic response of seagrass tissue in the frequency band 0.5-2.5 kHz.
    Wilson PS; Dunton KH
    J Acoust Soc Am; 2009 Apr; 125(4):1951-9. PubMed ID: 19354371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthesis and resource distribution through plant canopies.
    Niinemets U
    Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature.
    York PH; Gruber RK; Hill R; Ralph PJ; Booth DJ; Macreadie PI
    PLoS One; 2013; 8(10):e76377. PubMed ID: 24124551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth effects of shading and sedimentation in two tropical seagrass species: Implications for port management and impact assessment.
    Benham CF; Beavis SG; Hendry RA; Jackson EL
    Mar Pollut Bull; 2016 Aug; 109(1):461-470. PubMed ID: 27269385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.
    Borum J; Pedersen O; Kotula L; Fraser MW; Statton J; Colmer TD; Kendrick GA
    Plant Cell Environ; 2016 Jun; 39(6):1240-50. PubMed ID: 26476101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollutant tracking for 3 Western North Atlantic sea grasses by remote sensing: Preliminary diminishing white light responses of Thalassia testudinum, Halodule wrightii, and Zostera marina.
    Thorhaug A; Berlyn GP; Poulos HM; Goodale UM
    Mar Pollut Bull; 2015 Aug; 97(1-2):460-469. PubMed ID: 26119628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of light intensity on shade-induced leaf senescence.
    Brouwer B; Ziolkowska A; Bagard M; Keech O; Gardeström P
    Plant Cell Environ; 2012 Jun; 35(6):1084-98. PubMed ID: 22171633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum.
    Enríquez S; Pantoja-Reyes NI
    Oecologia; 2005 Sep; 145(2):235-43. PubMed ID: 15942763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.