BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21741670)

  • 1. Of microparticles and bacteria identification--(resonance) Raman micro-spectroscopy as a tool for biofilm analysis.
    Kniggendorf AK; Meinhardt-Wollweber M
    Water Res; 2011 Oct; 45(15):4571-82. PubMed ID: 21741670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors.
    Tsushima I; Ogasawara Y; Kindaichi T; Satoh H; Okabe S
    Water Res; 2007 Apr; 41(8):1623-34. PubMed ID: 17350073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy.
    Pätzold R; Keuntje M; Theophile K; Müller J; Mielcarek E; Ngezahayo A; Anders-von Ahlften A
    J Microbiol Methods; 2008 Mar; 72(3):241-8. PubMed ID: 18255179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy.
    Pätzold R; Keuntje M; Anders-von Ahlften A
    Anal Bioanal Chem; 2006 Sep; 386(2):286-92. PubMed ID: 16868726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon.
    Egli K; Bosshard F; Werlen C; Lais P; Siegrist H; Zehnder AJ; Van der Meer JR
    Microb Ecol; 2003 May; 45(4):419-32. PubMed ID: 12704553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ surface-enhanced Raman scattering analysis of biofilm.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Chem; 2008 Nov; 80(22):8538-44. PubMed ID: 18947197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor.
    Cho S; Takahashi Y; Fujii N; Yamada Y; Satoh H; Okabe S
    Chemosphere; 2010 Feb; 78(9):1129-35. PubMed ID: 20079515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free in situ SERS imaging of biofilms.
    Ivleva NP; Wagner M; Szkola A; Horn H; Niessner R; Haisch C
    J Phys Chem B; 2010 Aug; 114(31):10184-94. PubMed ID: 20684642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR).
    Zhang Z; Chen S; Wu P; Lin L; Luo H
    Bioresour Technol; 2010 Aug; 101(16):6309-14. PubMed ID: 20409706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor.
    Ni SQ; Lee PH; Fessehaie A; Gao BY; Sung S
    Bioresour Technol; 2010 Mar; 101(6):1792-9. PubMed ID: 19932613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV Raman spectroscopy--a technique for biological and mineralogical in situ planetary studies.
    Tarcea N; Harz M; Rösch P; Frosch T; Schmitt M; Thiele H; Hochleitner R; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1029-35. PubMed ID: 17890146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and microbial composition of nitrifying microbial aggregates and their relation to internal mass transfer effects.
    Wilén BM; Gapes D; Blackall LL; Keller J
    Water Sci Technol; 2004; 50(10):213-20. PubMed ID: 15656315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ.
    Sandt C; Smith-Palmer T; Pink J; Brennan L; Pink D
    J Appl Microbiol; 2007 Nov; 103(5):1808-20. PubMed ID: 17953591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    J Biophotonics; 2010 Aug; 3(8-9):548-56. PubMed ID: 20589769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy in chemical bioanalysis.
    Baena JR; Lendl B
    Curr Opin Chem Biol; 2004 Oct; 8(5):534-9. PubMed ID: 15450497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Another way to divide: the case of anammox bacteria.
    Rachel R
    Mol Microbiol; 2009 Sep; 73(6):978-81. PubMed ID: 19682260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.
    Ivleva NP; Kubryk P; Niessner R
    Anal Bioanal Chem; 2017 Jul; 409(18):4353-4375. PubMed ID: 28389920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.
    Lek Noophan P; Sripiboon S; Damrongsri M; Munakata-Marr J
    J Environ Manage; 2009 Feb; 90(2):967-72. PubMed ID: 18423965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anammox organisms: enrichment, cultivation, and environmental analysis.
    Jetten M; Schmid M; van de Pas-Schoonen K; Sinninghe Damsté J; Strous M
    Methods Enzymol; 2005; 397():34-57. PubMed ID: 16260284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.