These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21741818)

  • 1. Application of hyperthermophiles and their enzymes.
    Atomi H; Sato T; Kanai T
    Curr Opin Biotechnol; 2011 Oct; 22(5):618-26. PubMed ID: 21741818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress towards the application of hyperthermophiles and their enzymes.
    Atomi H
    Curr Opin Chem Biol; 2005 Apr; 9(2):166-73. PubMed ID: 15811801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremozymes: A Potential Source for Industrial Applications.
    Dumorné K; Córdova DC; Astorga-Eló M; Renganathan P
    J Microbiol Biotechnol; 2017 Apr; 27(4):649-659. PubMed ID: 28104900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconsideration of an early dogma, saying "there is no evidence for disulfide bonds in proteins from archaea".
    Ladenstein R; Ren B
    Extremophiles; 2008 Jan; 12(1):29-38. PubMed ID: 17508126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure effects on activity and stability of hyperthermophilic enzymes.
    Sun MM; Clark DS
    Methods Enzymol; 2001; 334():316-27. PubMed ID: 11398475
    [No Abstract]   [Full Text] [Related]  

  • 7. Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology.
    Yurimoto H; Kato N; Sakai Y
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):407-16. PubMed ID: 19593556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in the optimization of thermostable DNA polymerases for efficient applications.
    Pavlov AR; Pavlova NV; Kozyavkin SA; Slesarev AI
    Trends Biotechnol; 2004 May; 22(5):253-60. PubMed ID: 15109812
    [No Abstract]   [Full Text] [Related]  

  • 9. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers.
    Brochier-Armanet C; Forterre P
    Archaea; 2007 May; 2(2):83-93. PubMed ID: 17350929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase.
    Vettone A; Perugino G; Rossi M; Valenti A; Ciaramella M
    Extremophiles; 2014 Sep; 18(5):895-904. PubMed ID: 25102812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria.
    Bertoldo C; Antranikian G
    Curr Opin Chem Biol; 2002 Apr; 6(2):151-60. PubMed ID: 12038998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.
    Radianingtyas H; Wright PC
    FEMS Microbiol Rev; 2003 Dec; 27(5):593-616. PubMed ID: 14638414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology.
    Amin K; Tranchimand S; Benvegnu T; Abdel-Razzak Z; Chamieh H
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular bases of thermophily in hyperthermophiles.
    Imanaka T
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(9):587-602. PubMed ID: 22075760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications.
    Guiral M; Prunetti L; Aussignargues C; Ciaccafava A; Infossi P; Ilbert M; Lojou E; Giudici-Orticoni MT
    Adv Microb Physiol; 2012; 61():125-94. PubMed ID: 23046953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophiles in the genomic era: Biodiversity, science, and applications.
    Urbieta MS; Donati ER; Chan KG; Shahar S; Sin LL; Goh KM
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):633-47. PubMed ID: 25911946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidisciplinary involvement and potential of thermophiles.
    Rekadwad B; Gonzalez JM
    Folia Microbiol (Praha); 2019 May; 64(3):389-406. PubMed ID: 30386965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.