BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21742429)

  • 1. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Yang Y; LiCata VJ
    Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutamate effect on DNA binding by pol I DNA polymerases: osmotic stress and the effective reversal of salt linkage.
    Deredge DJ; Baker JT; Datta K; Licata VJ
    J Mol Biol; 2010 Aug; 401(2):223-38. PubMed ID: 20558176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative thermal denaturation of Thermus aquaticus and Escherichia coli type 1 DNA polymerases.
    Karantzeni I; Ruiz C; Liu CC; Licata VJ
    Biochem J; 2003 Sep; 374(Pt 3):785-92. PubMed ID: 12786603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme free energy of stabilization of Taq DNA polymerase.
    Schoeffler AJ; Joubert AM; Peng F; Khan F; Liu CC; LiCata VJ
    Proteins; 2004 Mar; 54(4):616-21. PubMed ID: 14997557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pol I DNA polymerases stimulate DNA end-joining by Escherichia coli DNA ligase.
    Yang Y; LiCata VJ
    Biochem Biophys Res Commun; 2018 Feb; 497(1):13-18. PubMed ID: 29409896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases.
    Brown HS; Licata VJ
    Biochim Biophys Acta; 2013 Oct; 1834(10):2133-8. PubMed ID: 23851145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.
    Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J
    Biochemistry; 1996 Oct; 35(39):12742-61. PubMed ID: 8841118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RecA interacts with Klenow and enhances fidelity of DNA synthesis in vitro.
    Karthikeyan G; Lakshmikant GS; Wagle MD; Krishnamoorthy G; Rao BJ
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):149-56. PubMed ID: 10941797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.
    Elias AA; Cisneros GA
    Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I).
    Chiaramonte M; Moore CL; Kincaid K; Kuchta RD
    Biochemistry; 2003 Sep; 42(35):10472-81. PubMed ID: 12950174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and functions of Escherichia coli: Pol IV and Pol V.
    Fuchs RP; Fujii S; Wagner J
    Adv Protein Chem; 2004; 69():229-64. PubMed ID: 15588845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global conformations, hydrodynamics, and X-ray scattering properties of Taq and Escherichia coli DNA polymerases in solution.
    Joubert AM; Byrd AS; LiCata VJ
    J Biol Chem; 2003 Jul; 278(28):25341-7. PubMed ID: 12730189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced ribonucleotide incorporation by an O-helix mutant of Thermus aquaticus DNA polymerase I.
    Ogawa M; Tosaka A; Ito Y; Yoshida S; Suzuki M
    Mutat Res; 2001 Apr; 485(3):197-207. PubMed ID: 11267831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of template-primer and gapped DNA substrates by the human DNA polymerase beta.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Mol Biol; 2001 May; 308(3):477-500. PubMed ID: 11327782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay.
    Su KY; Lai HM; Goodman SD; Hu WY; Cheng WC; Lin LI; Yang YC; Fang WH
    DNA Repair (Amst); 2018 Jan; 61():63-75. PubMed ID: 29223016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.