BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2174260)

  • 1. Metal-ligand vibrations of cyanoferric myeloperoxidase and cyanoferric horseradish peroxidase: evidence for a constrained heme pocket in myeloperoxidase.
    López-Garriga JJ; Oertling WA; Kean RT; Hoogland H; Wever R; Babcock GT
    Biochemistry; 1990 Oct; 29(40):9387-95. PubMed ID: 2174260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy.
    Smulevich G; Paoli M; Burke JF; Sanders SA; Thorneley RN; Smith AT
    Biochemistry; 1994 Jun; 33(23):7398-407. PubMed ID: 8003505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing nitrite coordination in horseradish peroxidase by resonance Raman spectroscopy: Detection of two binding sites.
    Ioannou A; Pinakoulaki E
    J Inorg Biochem; 2017 Apr; 169():79-85. PubMed ID: 28160625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome c peroxidase mutant active site structures probed by resonance Raman and infrared signatures of the CO adducts.
    Smulevich G; Mauro JM; Fishel LA; English AM; Kraut J; Spiro TG
    Biochemistry; 1988 Jul; 27(15):5486-92. PubMed ID: 2846040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative carbon monoxide binding modes for horseradish peroxidase studied by resonance Raman spectroscopy.
    Evangelista-Kirkup R; Smulevich G; Spiro TG
    Biochemistry; 1986 Jul; 25(15):4420-5. PubMed ID: 3756147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption and resonance raman spectroscopy of human myeloperoxidase at neutral and acid pH.
    Yue KT; Taylor KL; Kinkade JM; Sinclair RB; Powers LS
    Biochim Biophys Acta; 1997 Apr; 1338(2):282-94. PubMed ID: 9128147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 3. Bound ligand vibrational modes.
    Han SH; Madden JF; Siegel LM; Spiro TG
    Biochemistry; 1989 Jun; 28(13):5477-85. PubMed ID: 2673348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman study of cyanide-ligated horseradish peroxidase. Detection of two binding geometries and direct evidence for the "push-pull" effect.
    al-Mustafa J; Kincaid JR
    Biochemistry; 1994 Mar; 33(8):2191-7. PubMed ID: 8117676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman studies indicate a unique heme active site in prostaglandin H synthase.
    Lou BS; Snyder JK; Marshall P; Wang JS; Wu G; Kulmacz RJ; Tsai AL; Wang J
    Biochemistry; 2000 Oct; 39(40):12424-34. PubMed ID: 11015223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct heme active-site structure in lactoperoxidase revealed by resonance Raman spectroscopy.
    Hu S; Treat RW; Kincaid JR
    Biochemistry; 1993 Sep; 32(38):10125-30. PubMed ID: 8399138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking.
    Hallingbäck HR; Gabdoulline RR; Wade RC
    Biochemistry; 2006 Mar; 45(9):2940-50. PubMed ID: 16503648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman studies of sterically hindered cyanomet "strapped" hemes. Effects of ligand distortion and base tension on iron-carbon bond.
    Tanaka T; Yu NT; Chang CK
    Biophys J; 1987 Nov; 52(5):801-5. PubMed ID: 3427189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme-linked ionization of horseradish peroxidase compound II monitored by the resonance Raman Fe(IV)=O stretching vibration.
    Sitter AJ; Reczek CM; Terner J
    J Biol Chem; 1985 Jun; 260(12):7515-22. PubMed ID: 3997887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectroscopy of soybean peroxidase.
    Bedard P; Mabrouk PA
    Biochem Biophys Res Commun; 1997 Nov; 240(1):65-7. PubMed ID: 9367883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and determination of the {Fe(NO)(2)} core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state.
    Dai RJ; Ke SC
    J Phys Chem B; 2007 Mar; 111(9):2335-46. PubMed ID: 17295535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherence spectroscopy investigations of the low-frequency vibrations of heme: effects of protein-specific perturbations.
    Gruia F; Kubo M; Ye X; Ionascu D; Lu C; Poole RK; Yeh SR; Champion PM
    J Am Chem Soc; 2008 Apr; 130(15):5231-44. PubMed ID: 18355013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of reaction of chlorite with mammalian heme peroxidases.
    Jakopitsch C; Pirker KF; Flemmig J; Hofbauer S; Schlorke D; Furtmüller PG; Arnhold J; Obinger C
    J Inorg Biochem; 2014 Jun; 135(100):10-9. PubMed ID: 24632343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman study of the active site of Coprinus cinereus peroxidase.
    Smulevich G; Feis A; Focardi C; Tams J; Welinder KG
    Biochemistry; 1994 Dec; 33(51):15425-32. PubMed ID: 7803406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.