BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21742866)

  • 1. TrbB from conjugative plasmid F is a structurally distinct disulfide isomerase that requires DsbD for redox state maintenance.
    Hemmis CW; Berkmen M; Eser M; Schildbach JF
    J Bacteriol; 2011 Sep; 193(18):4588-97. PubMed ID: 21742866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. F-like type IV secretion systems encode proteins with thioredoxin folds that are putative DsbC homologues.
    Elton TC; Holland SJ; Frost LS; Hazes B
    J Bacteriol; 2005 Dec; 187(24):8267-77. PubMed ID: 16321931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin-like proteins in F and other plasmid systems.
    Hemmis CW; Schildbach JF
    Plasmid; 2013 Sep; 70(2):168-89. PubMed ID: 23721857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli.
    McCarthy AA; Haebel PW; Törrönen A; Rybin V; Baker EN; Metcalf P
    Nat Struct Biol; 2000 Mar; 7(3):196-9. PubMed ID: 10700276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations of the membrane-bound disulfide reductase DsbD that block electron transfer steps from cytoplasm to periplasm in Escherichia coli.
    Cho SH; Beckwith J
    J Bacteriol; 2006 Jul; 188(14):5066-76. PubMed ID: 16816179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin.
    Rietsch A; Bessette P; Georgiou G; Beckwith J
    J Bacteriol; 1997 Nov; 179(21):6602-8. PubMed ID: 9352906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC.
    Arredondo S; Segatori L; Gilbert HF; Georgiou G
    J Biol Chem; 2008 Nov; 283(46):31469-76. PubMed ID: 18782764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD.
    Goulding CW; Sawaya MR; Parseghian A; Lim V; Eisenberg D; Missiakas D
    Biochemistry; 2002 Jun; 41(22):6920-7. PubMed ID: 12033924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli.
    Missiakas D; Schwager F; Raina S
    EMBO J; 1995 Jul; 14(14):3415-24. PubMed ID: 7628442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways.
    Segatori L; Paukstelis PJ; Gilbert HF; Georgiou G
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10018-23. PubMed ID: 15220477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DsbC activation by the N-terminal domain of DsbD.
    Goldstone D; Haebel PW; Katzen F; Bader MW; Bardwell JC; Beckwith J; Metcalf P
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9551-6. PubMed ID: 11493705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC.
    Arredondo SA; Chen TF; Riggs AF; Gilbert HF; Georgiou G
    J Biol Chem; 2009 Sep; 284(36):23972-9. PubMed ID: 19581640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of the dimerization domains of the Escherichia coli disulfide-bond isomerase enzymes DsbC and DsbG.
    Yeh SM; Koon N; Squire C; Metcalf P
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):465-71. PubMed ID: 17372350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex.
    Haebel PW; Goldstone D; Katzen F; Beckwith J; Metcalf P
    EMBO J; 2002 Sep; 21(18):4774-84. PubMed ID: 12234918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade.
    Katzen F; Beckwith J
    Cell; 2000 Nov; 103(5):769-79. PubMed ID: 11114333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CXXC motif is more than a redox rheostat.
    Quan S; Schneider I; Pan J; Von Hacht A; Bardwell JCA
    J Biol Chem; 2007 Sep; 282(39):28823-28833. PubMed ID: 17675287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm.
    Debarbieux L; Beckwith J
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10751-6. PubMed ID: 9724776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins.
    Andersen CL; Matthey-Dupraz A; Missiakas D; Raina S
    Mol Microbiol; 1997 Oct; 26(1):121-32. PubMed ID: 9383195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of a disulfide isomerization system.
    Collet JF; Riemer J; Bader MW; Bardwell JC
    J Biol Chem; 2002 Jul; 277(30):26886-92. PubMed ID: 12004064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo substrate specificity of periplasmic disulfide oxidoreductases.
    Hiniker A; Bardwell JC
    J Biol Chem; 2004 Mar; 279(13):12967-73. PubMed ID: 14726535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.