These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21742909)

  • 1. Functionally redundant cellobiose-degrading soil bacteria respond differentially to oxygen.
    Schellenberger S; Drake HL; Kolb S
    Appl Environ Microbiol; 2011 Sep; 77(17):6043-8. PubMed ID: 21742909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen.
    Schellenberger S; Kolb S; Drake HL
    Environ Microbiol; 2010 Apr; 12(4):845-61. PubMed ID: 20050868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.
    Schellenberger S; Drake HL; Kolb S
    FEMS Microbiol Lett; 2012 Feb; 327(1):60-5. PubMed ID: 22098368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores.
    Lüdemann H; Arth I; Liesack W
    Appl Environ Microbiol; 2000 Feb; 66(2):754-62. PubMed ID: 10653747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a fermentative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica.
    Gössner AS; Devereux R; Ohnemüller N; Acker G; Stackebrandt E; Drake HL
    Appl Environ Microbiol; 1999 Nov; 65(11):5124-33. PubMed ID: 10543831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox fluctuation structures microbial communities in a wet tropical soil.
    Pett-Ridge J; Firestone MK
    Appl Environ Microbiol; 2005 Nov; 71(11):6998-7007. PubMed ID: 16269735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assimilation of cellulose-derived carbon by microeukaryotes in oxic and anoxic slurries of an aerated soil.
    Chatzinotas A; Schellenberger S; Glaser K; Kolb S
    Appl Environ Microbiol; 2013 Sep; 79(18):5777-81. PubMed ID: 23851095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia.
    Wagner D; Kobabe S; Liebner S
    Can J Microbiol; 2009 Jan; 55(1):73-83. PubMed ID: 19190703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters.
    Fahy A; McGenity TJ; Timmis KN; Ball AS
    FEMS Microbiol Ecol; 2006 Nov; 58(2):260-70. PubMed ID: 17064267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.
    Woo HL; Hazen TC; Simmons BA; DeAngelis KM
    Syst Appl Microbiol; 2014 Feb; 37(1):60-7. PubMed ID: 24238986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic consumers of monosaccharides in a moderately acidic fen.
    Hamberger A; Horn MA; Dumont MG; Murrell JC; Drake HL
    Appl Environ Microbiol; 2008 May; 74(10):3112-20. PubMed ID: 18378662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil.
    Degelmann DM; Kolb S; Dumont M; Murrell JC; Drake HL
    FEMS Microbiol Ecol; 2009 Jun; 68(3):312-9. PubMed ID: 19453494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a toluene-degrading bacterium from a soil sample through H(2)(18)O DNA stable isotope probing.
    Woods A; Watwood M; Schwartz E
    Appl Environ Microbiol; 2011 Sep; 77(17):5995-9. PubMed ID: 21742928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.
    Noll M; Matthies D; Frenzel P; Derakshani M; Liesack W
    Environ Microbiol; 2005 Mar; 7(3):382-95. PubMed ID: 15683399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil.
    Cébron A; Beguiristain T; Faure P; Norini MP; Masfaraud JF; Leyval C
    Appl Environ Microbiol; 2009 Oct; 75(19):6322-30. PubMed ID: 19633127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil.
    Shi W; Takano T; Liu S
    World J Microbiol Biotechnol; 2012 May; 28(5):2147-57. PubMed ID: 22806037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions.
    Mirza BS; Rodrigues JL
    Appl Environ Microbiol; 2012 Aug; 78(16):5542-9. PubMed ID: 22660701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria.
    Gray ND; Comaskey D; Miskin IP; Pickup RW; Suzuki K; Head IM
    Environ Microbiol; 2004 Jul; 6(7):669-77. PubMed ID: 15186345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes.
    Will C; Thürmer A; Wollherr A; Nacke H; Herold N; Schrumpf M; Gutknecht J; Wubet T; Buscot F; Daniel R
    Appl Environ Microbiol; 2010 Oct; 76(20):6751-9. PubMed ID: 20729324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions.
    Geissler A; Merroun M; Geipel G; Reuther H; Selenska-Pobell S
    Geobiology; 2009 Jun; 7(3):282-94. PubMed ID: 19476503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.