BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 21743011)

  • 21. Robo1: a potential role in ocular angiogenesis.
    Huang L; Xu Y; Yu W; Li X; Liqun C; He X; Peiying H
    Curr Eye Res; 2009 Dec; 34(12):1019-29. PubMed ID: 19958120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy.
    DeNiro M; Al-Halafi A; Al-Mohanna FH; Alsmadi O; Al-Mohanna FA
    Mol Pharmacol; 2010 Mar; 77(3):348-67. PubMed ID: 20008515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion of smooth muscle alpha-actin alters blood-retina barrier permeability and retinal function.
    Tomasek JJ; Haaksma CJ; Schwartz RJ; Vuong DT; Zhang SX; Ash JD; Ma JX; Al-Ubaidi MR
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2693-700. PubMed ID: 16723488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caveolin-1 expression regulates blood-retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy.
    Tian XF; Xia XB; Xu HZ; Xiong SQ; Jiang J
    Clin Exp Ophthalmol; 2012; 40(1):e58-66. PubMed ID: 21794046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, inhibits angiogenesis in models of ocular neovascular diseases.
    Oliner JD; Bready J; Nguyen L; Estrada J; Hurh E; Ma H; Pretorius J; Fanslow W; Nork TM; Leedle RA; Kaufman S; Coxon A
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2170-80. PubMed ID: 22410553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aquaporin-1 independent microvessel proliferation in a neonatal mouse model of oxygen-induced retinopathy.
    Ruiz-Ederra J; Verkman AS
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4802-10. PubMed ID: 17898307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability.
    Díaz-Coránguez M; Lin CM; Liebner S; Antonetti DA
    J Biol Chem; 2020 Apr; 295(14):4647-4660. PubMed ID: 32086377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of purinergic P2 receptors in experimental retinal neovascularization.
    Sarman S; Mancini J; van der Ploeg I; Croxatto JO; Kvanta A; Gallo JE
    Curr Eye Res; 2008 Mar; 33(3):285-91. PubMed ID: 18350440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression.
    Colombo ES; Menicucci G; McGuire PG; Das A
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1793-800. PubMed ID: 17389513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and activation of STAT3 in ischemia-induced retinopathy.
    Mechoulam H; Pierce EA
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4409-16. PubMed ID: 16303927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of MAPKs in endostatin-mediated regulation of blood-retinal barrier function.
    Campbell M; Collery R; McEvoy A; Gardiner TA; Stitt AW; Brankin B
    Curr Eye Res; 2006 Dec; 31(12):1033-45. PubMed ID: 17169842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Normal vascular development in mice deficient in endothelial NO synthase: possible role of neuronal NO synthase.
    Al-Shabrawey M; El-Remessy A; Gu X; Brooks SS; Hamed MS; Huang P; Caldwell RB
    Mol Vis; 2003 Oct; 9():549-58. PubMed ID: 14551528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wnt/Frizzled signaling in the vasculature: new angiogenic factors in sight.
    Masckauchán TN; Kitajewski J
    Physiology (Bethesda); 2006 Jun; 21():181-8. PubMed ID: 16714476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor.
    Ohlmann A; Tamm ER
    Prog Retin Eye Res; 2012 May; 31(3):243-57. PubMed ID: 22387751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An essential role of the cysteine-rich domain of FZD4 in Norrin/Wnt signaling and familial exudative vitreoretinopathy.
    Zhang K; Harada Y; Wei X; Shukla D; Rajendran A; Tawansy K; Bedell M; Lim S; Shaw PX; He X; Yang Z
    J Biol Chem; 2011 Mar; 286(12):10210-5. PubMed ID: 21177847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LRP-1 Pathway Targeted Inhibition of Vascular Abnormalities in the Retina of Diabetic Mice.
    Hossain A; Tauhid L; Davenport I; Huckaba T; Graves R; Mandal T; Muniruzzaman S; Ahmed SA; Bhattacharjee PS
    Curr Eye Res; 2017 Apr; 42(4):640-647. PubMed ID: 27442082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-lapse imaging of retinal angiogenesis reveals decreased development and progression of neovascular sprouting by anecortave desacetate.
    Unoki N; Murakami T; Ogino K; Nukada M; Yoshimura N
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2347-55. PubMed ID: 19959648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Canonical WNT signaling components in vascular development and barrier formation.
    Zhou Y; Wang Y; Tischfield M; Williams J; Smallwood PM; Rattner A; Taketo MM; Nathans J
    J Clin Invest; 2014 Sep; 124(9):3825-46. PubMed ID: 25083995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Norrin stimulates cell proliferation in the superficial retinal vascular plexus and is pivotal for the recruitment of mural cells.
    Zuercher J; Fritzsche M; Feil S; Mohn L; Berger W
    Hum Mol Genet; 2012 Jun; 21(12):2619-30. PubMed ID: 22394677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiostatin inhibits pathological but not physiological retinal angiogenesis.
    Drixler TA; Borel Rinkes IH; Ritchie ED; Treffers FW; van Vroonhoven TJ; Gebbink MF; Voest EE
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3325-30. PubMed ID: 11726640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.