BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 2174376)

  • 1. Modification of astrocytes in the spinal cord following dorsal root or peripheral nerve lesions.
    Murray M; Wang SD; Goldberger ME; Levitt P
    Exp Neurol; 1990 Dec; 110(3):248-57. PubMed ID: 2174376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat.
    Liu L; Rudin M; Kozlova EN
    Exp Brain Res; 2000 Mar; 131(1):64-73. PubMed ID: 10759172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tenascin-C expression by neurons and glial cells in the rat spinal cord: changes during postnatal development and after dorsal root or sciatic nerve injury.
    Zhang Y; Anderson PN; Campbell G; Mohajeri H; Schachner M; Lieberman AR
    J Neurocytol; 1995 Aug; 24(8):585-601. PubMed ID: 7595667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation and migration of astrocytes in the spinal cord following dorsal root injury in the adult rat.
    Kozlova EN
    Eur J Neurosci; 2003 Feb; 17(4):782-90. PubMed ID: 12603268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytic reactions in spinal gray matter following sciatic axotomy.
    Gilmore SA; Sims TJ; Leiting JE
    Glia; 1990; 3(5):342-9. PubMed ID: 2146223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in glial fibrillary acidic protein immunoreactivity in the upper dorsal horn of the rat spinal cord in the course of transganglionic degenerative atrophy and regenerative proliferation.
    Hajós F; Csillik B; Knyihár-Csillik E
    Neurosci Lett; 1990 Sep; 117(1-2):8-13. PubMed ID: 2290624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of striatal astrocytes to neuronal deafferentation: an immunocytochemical and ultrastructural study.
    Cheng HW; Jiang T; Brown SA; Pasinetti GM; Finch CE; McNeill TH
    Neuroscience; 1994 Sep; 62(2):425-39. PubMed ID: 7830889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury.
    Garrison CJ; Dougherty PM; Kajander KC; Carlton SM
    Brain Res; 1991 Nov; 565(1):1-7. PubMed ID: 1723019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial cell responses, complement, and clusterin in the central nervous system following dorsal root transection.
    Liu L; Persson JK; Svensson M; Aldskogius H
    Glia; 1998 Jul; 23(3):221-38. PubMed ID: 9633807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of substance P and calcitonin gene-related peptide in dorsal root ganglia and dorsal horn after neonatal sciatic nerve lesion.
    Nothias F; Tessler A; Murray M
    J Comp Neurol; 1993 Aug; 334(3):370-84. PubMed ID: 7690784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial bundle formation in spinal roots following experimental neuronopathy.
    Yamamoto T; Iwasaki Y; Konno H; Kudo H
    Ann Neurol; 1986 Aug; 20(2):267-71. PubMed ID: 3019231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse.
    Fujita K; Yamauchi M; Matsui T; Titani K; Takahashi H; Kato T; Isomura G; Ando M; Nagata Y
    Brain Res; 1998 Feb; 785(1):31-40. PubMed ID: 9526038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons.
    Wotherspoon G; Fox A; McIntyre P; Colley S; Bevan S; Winter J
    Neuroscience; 2005; 135(1):235-45. PubMed ID: 16084654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats.
    Hatashita S; Sekiguchi M; Kobayashi H; Konno S; Kikuchi S
    Spine (Phila Pa 1976); 2008 May; 33(12):1344-51. PubMed ID: 18496347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical studies of dorsal column axons and dorsal root ganglion cells after spinal cord injury in the newborn rat.
    Lahr SP; Stelzner DJ
    J Comp Neurol; 1990 Mar; 293(3):377-98. PubMed ID: 2324322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astrogliosis in different zones of the spinal cord gray matter after sciatic nerve axotomy in the newborn rat: a morphometric and immunohistochemical study.
    Tiraihi T; Masoudian N
    Histol Histopathol; 2003 Apr; 18(2):459-65. PubMed ID: 12647796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice.
    Narita M; Yoshida T; Nakajima M; Narita M; Miyatake M; Takagi T; Yajima Y; Suzuki T
    J Neurochem; 2006 Jun; 97(5):1337-48. PubMed ID: 16606373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior.
    Colburn RW; Rickman AJ; DeLeo JA
    Exp Neurol; 1999 Jun; 157(2):289-304. PubMed ID: 10364441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model.
    George R; Griffin JW
    Exp Neurol; 1994 Oct; 129(2):225-36. PubMed ID: 7957737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.