These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21743919)

  • 21. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.
    Yu J; Fan J; Lv K
    Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells.
    Li X; Reynal A; Barnes P; Humphry-Baker R; Zakeeruddin SM; De Angelis F; O'Regan BC
    Phys Chem Chem Phys; 2012 Nov; 14(44):15421-8. PubMed ID: 23070136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.
    Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V
    J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study of new ruthenium-based dyes for dye-sensitized solar cells.
    Monari A; Assfeld X; Beley M; Gros PC
    J Phys Chem A; 2011 Apr; 115(15):3596-603. PubMed ID: 21428400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. End-group functionalization of poly(3-hexylthiophene) as an efficient route to photosensitize nanocrystalline TiO2 films for photovoltaic applications.
    Krüger RA; Gordon TJ; Baumgartner T; Sutherland TC
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2031-41. PubMed ID: 21563756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization.
    Ohsaki Y; Masaki N; Kitamura T; Wada Y; Okamoto T; Sekino T; Niihara K; Yanagida S
    Phys Chem Chem Phys; 2005 Dec; 7(24):4157-63. PubMed ID: 16474882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substituent effect on the π linkers in triphenylamine dyes for sensitized solar cells: a DFT/TDDFT study.
    Xu J; Zhu L; Fang D; Chen B; Liu L; Wang L; Xu W
    Chemphyschem; 2012 Oct; 13(14):3320-9. PubMed ID: 22763917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bisquinoxaline-fused porphyrins for dye-sensitized solar cells.
    Imahori H; Iijima H; Hayashi H; Toude Y; Umeyama T; Matano Y; Ito S
    ChemSusChem; 2011 Jun; 4(6):797-805. PubMed ID: 21591269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy level alignment of cyclohexane on Rh(111) surfaces: the importance of interfacial dipole and final-state screening.
    Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2013 Jan; 138(4):044702. PubMed ID: 23387610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changing adsorption mode of FePc on TiO2(110) by surface modification with bipyridine.
    Palmgren P; Yu S; Hennies F; Nilson K; Akermark B; Göthelid M
    J Chem Phys; 2008 Aug; 129(7):074707. PubMed ID: 19044792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrene-terminated phenylenethynylene rigid linkers anchored to metal oxide nanoparticles.
    Taratula O; Rochford J; Piotrowiak P; Galoppini E; Carlisle RA; Meyer GJ
    J Phys Chem B; 2006 Aug; 110(32):15734-41. PubMed ID: 16898719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application.
    Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST
    ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells.
    Park KH; Kim TY; Han S; Ko HS; Lee SH; Song YM; Kim JH; Lee JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():868-73. PubMed ID: 24709352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.
    Shao W; Gu F; Li C; Lu M
    Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Everything you always wanted to know about black dye (but were afraid to ask): a DFT/TDDFT investigation.
    Fantacci S; Lobello MG; De Angelis F
    Chimia (Aarau); 2013; 67(3):121-8. PubMed ID: 23574950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic and molecular structures of organic dye/TiO(2) interfaces for solar cell applications: a core level photoelectron spectroscopy study.
    Hahlin M; Johansson EM; Plogmaker S; Odelius M; Hagberg DP; Sun L; Siegbahn H; Rensmo H
    Phys Chem Chem Phys; 2010 Feb; 12(7):1507-17. PubMed ID: 20126763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes.
    Lee HJ; Chang DW; Park SM; Zakeeruddin SM; Grätzel M; Nazeeruddin MK
    Chem Commun (Camb); 2010 Dec; 46(46):8788-90. PubMed ID: 20957271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral characteristics and photosensitization of TiO2 nanoparticles in reverse micelles by perylenes.
    Hernández LI; Godin R; Bergkamp JJ; Llansola Portolés MJ; Sherman BD; Tomlin J; Kodis G; Méndez-Hernández DD; Bertolotti S; Chesta CA; Mariño-Ochoa E; Moore AL; Moore TA; Cosa G; Palacios RE
    J Phys Chem B; 2013 Apr; 117(16):4568-81. PubMed ID: 23189921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.