BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21744035)

  • 1. A modified protocol for RNA extraction from different peach tissues suitable for gene isolation and real-time PCR analysis.
    Tong Z; Qu S; Zhang J; Wang F; Tao J; Gao Z; Zhang Z
    Mol Biotechnol; 2012 Mar; 50(3):229-36. PubMed ID: 21744035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides.
    Japelaghi RH; Haddad R; Garoosi GA
    Mol Biotechnol; 2011 Oct; 49(2):129-37. PubMed ID: 21302150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops.
    Christou A; Georgiadou EC; Filippou P; Manganaris GA; Fotopoulos V
    Gene; 2014 Mar; 537(1):169-73. PubMed ID: 24321691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short Communication An efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues.
    Oliveira RR; Viana AJ; Reátegui AC; Vincentz MG
    Genet Mol Res; 2015 Dec; 14(4):18828-38. PubMed ID: 26782533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses.
    Meisel L; Fonseca B; González S; Baeza-Yates R; Cambiazo V; Campos R; Gonźalez M; Orellana A; Retamales J; Silva H
    Biol Res; 2005; 38(1):83-8. PubMed ID: 15977413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh.
    Wang Y; Pijut PM
    Tree Physiol; 2013 Aug; 33(8):855-65. PubMed ID: 23956129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE.
    Zhang Y; Bai Y; Han J; Chen M; Kayesh E; Jiang W; Fang J
    J Plant Physiol; 2013 Jan; 170(1):80-92. PubMed ID: 23107282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two modified RNA extraction methods compatible with transcript profiling and gene expression analysis for cotton roots.
    Xie C; Wang C; Wang X; Yang X
    Prep Biochem Biotechnol; 2013; 43(5):500-11. PubMed ID: 23581784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.).
    Chen Q; Yu HW; Wang XR; Xie XL; Yue XY; Tang HR
    Genet Mol Res; 2012 Jun; 11(2):1773-82. PubMed ID: 22843054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient method for isolation of high-quality RNA from Psidium guajava L. tissues.
    Carpinetti PA; Fioresi VS; Ignez da Cruz T; de Almeida FAN; Canal D; Ferreira A; Ferreira MFDS
    PLoS One; 2021; 16(7):e0255245. PubMed ID: 34310664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved method of isolation of high quality total RNA from purple-fleshed sweet potato, Ipomoea batatas (L.) Lam.
    Zhou W; Gong Y; Feng Q; Gao F
    Prep Biochem Biotechnol; 2009; 39(2):95-104. PubMed ID: 19291573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep RNA-Seq uncovers the peach transcriptome landscape.
    Wang L; Zhao S; Gu C; Zhou Y; Zhou H; Ma J; Cheng J; Han Y
    Plant Mol Biol; 2013 Nov; 83(4-5):365-77. PubMed ID: 23783411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient oil palm total RNA extraction with a total RNA extraction kit.
    Habib SH; Saud HM; Kausar H
    Genet Mol Res; 2014 Apr; 13(2):2359-67. PubMed ID: 24781991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified protocol for RNA isolation from high polysaccharide containing Cupressus arizonica pollen. Applications for RT-PCR and phage display library construction.
    Pico de Coaña Y; Parody N; Fernández-Caldas E; Alonso C
    Mol Biotechnol; 2010 Feb; 44(2):127-32. PubMed ID: 19902388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate metabolism changes in Prunus persica gummosis infected with Lasiodiplodia theobromae.
    Li Z; Gao L; Wang YT; Zhu W; Ye JL; Li GH
    Phytopathology; 2014 May; 104(5):445-52. PubMed ID: 24283537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective method of RNA isolation from Fallopia multiflora tuberous roots.
    Chen L; Sheng SJ; Tan XM; Shen YJ; Li HQ; Zhao SJ
    Prep Biochem Biotechnol; 2012; 42(1):87-96. PubMed ID: 22239710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and efficient isolation of high-quality total RNA from Hibiscus tiliaceus, a mangrove associate and its relatives.
    Yang G; Zhou R; Tang T; Shi S
    Prep Biochem Biotechnol; 2008; 38(3):257-64. PubMed ID: 18569872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small RNA Isolation from Tissues of Grapevine and Woody Plants.
    Giampetruzzi A; Chiumenti M; Minafra A; Saldarelli P
    Methods Mol Biol; 2018; 1746():27-36. PubMed ID: 29492883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing.
    Bassett CL; Artlip TS; Callahan AM
    Planta; 2002 Aug; 215(4):679-88. PubMed ID: 12172852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage.
    Lombardo VA; Osorio S; Borsani J; Lauxmann MA; Bustamante CA; Budde CO; Andreo CS; Lara MV; Fernie AR; Drincovich MF
    Plant Physiol; 2011 Dec; 157(4):1696-710. PubMed ID: 22021422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.