These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21744273)

  • 1. Efflux of bile acids in Lactobacillus reuteri is mediated by ATP.
    Bustos AY; Raya R; de Valdez GF; Taranto MP
    Biotechnol Lett; 2011 Nov; 33(11):2265-9. PubMed ID: 21744273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242.
    Martoni CJ; Labbé A; Ganopolsky JG; Prakash S; Jones ML
    Gut Microbes; 2015; 6(1):57-65. PubMed ID: 25612224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FXR Signaling-Mediated Bile Acid Metabolism Is Critical for Alleviation of Cholesterol Gallstones by
    Ye X; Huang D; Dong Z; Wang X; Ning M; Xia J; Shen S; Wu S; Shi Y; Wang J; Wan X
    Microbiol Spectr; 2022 Oct; 10(5):e0051822. PubMed ID: 36036629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations.
    Rodríguez C; Rimaux T; Fornaguera MJ; Vrancken G; de Valdez GF; De Vuyst L; Mozzi F
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2519-27. PubMed ID: 21993480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different relationships between cellular ATP and hepatic uptake among taurocholate, cholate, and organic anions.
    Yamazaki M; Suzuki H; Hanano M; Sugiyama Y
    Am J Physiol; 1993 Apr; 264(4 Pt 1):G693-701. PubMed ID: 8476055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of sodium glycocholate on production of conjugated linoleic acid by cells of Lactobacillus reuteri ATCC 55739.
    Roman-Nunez M; Cuesta-Alonso EP; Gilliland SE
    J Food Sci; 2007 May; 72(4):M140-3. PubMed ID: 17995782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics characterization of taurocholic transport in Lactobacillus reuteri.
    Taranto MP; Magni C; de Mendoza D; Valdez GF
    Curr Microbiol; 2001 Jan; 42(1):18-20. PubMed ID: 11116391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri.
    Lee K; Lee HG; Choi YJ
    J Biotechnol; 2008 Oct; 137(1-4):14-9. PubMed ID: 18680767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CbsT2 from Lactobacillus johnsonii 100-100 is a transport protein of the major facilitator superfamily that facilitates bile acid antiport.
    Elkins CA; Savage DC
    J Mol Microbiol Biotechnol; 2003; 6(2):76-87. PubMed ID: 15044826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract.
    Martoni C; Bhathena J; Urbanska AM; Prakash S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):225-33. PubMed ID: 18719901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt.
    Müller M; Ishikawa T; Berger U; Klünemann C; Lucka L; Schreyer A; Kannicht C; Reutter W; Kurz G; Keppler D
    J Biol Chem; 1991 Oct; 266(28):18920-6. PubMed ID: 1918007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of substrate specificity and inhibitory mechanism of bile salt hydrolase from Lactobacillus reuteri CRL 1098 using molecular docking analysis.
    Ledesma AE; Taranto MP; Bustos AY
    Biotechnol Lett; 2021 May; 43(5):1063-1073. PubMed ID: 33591463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri.
    Lee K; Pi K
    Biochemistry (Mosc); 2010 Apr; 75(4):460-5. PubMed ID: 20618135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential disposition of chenodeoxycholic acid versus taurocholic acid in response to acute troglitazone exposure in rat hepatocytes.
    Marion TL; Perry CH; St Claire RL; Yue W; Brouwer KL
    Toxicol Sci; 2011 Apr; 120(2):371-80. PubMed ID: 21262925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation and subsequent freeze-drying of Lactobacillus reuteri CRL 1324 for its potential inclusion in vaginal probiotic formulations.
    Juárez Tomás MS; De Gregorio PR; Leccese Terraf MC; Nader-Macías ME
    Eur J Pharm Sci; 2015 Nov; 79():87-95. PubMed ID: 26299342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a proton-chloride antiporter (EriC) by Himar1 transposon mutagenesis in Lactobacillus reuteri and its role in histamine production.
    Hemarajata P; Spinler JK; Balderas MA; Versalovic J
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):579-92. PubMed ID: 24488273
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhang C; Fang R; Lu X; Zhang Y; Yang M; Su Y; Jiang Y; Man C
    Food Funct; 2022 Jun; 13(12):6688-6701. PubMed ID: 35647914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid.
    Elkins CA; Mullis LB
    Appl Environ Microbiol; 2004 Dec; 70(12):7200-9. PubMed ID: 15574918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acid transport across the hepatocyte canalicular membrane.
    Suchy FJ; Sippel CJ; Ananthanarayanan M
    FASEB J; 1997 Mar; 11(4):199-205. PubMed ID: 9068608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling.
    Thomas CM; Hong T; van Pijkeren JP; Hemarajata P; Trinh DV; Hu W; Britton RA; Kalkum M; Versalovic J
    PLoS One; 2012; 7(2):e31951. PubMed ID: 22384111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.