These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 21744401)

  • 21. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation.
    Feng S; Lin J; Cheng M; Li YZ; Chen G; Huang Z; Yu Y; Chen R; Zeng H
    Appl Spectrosc; 2009 Oct; 63(10):1089-94. PubMed ID: 19843357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples.
    Ruan C; Luo W; Wang W; Gu B
    Anal Chim Acta; 2007 Dec; 605(1):80-6. PubMed ID: 18022414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic Cyanide Decorated SERS Active Nanopipettes for Quantitative Detection of Hemeproteins and Fe
    Hanif S; Liu H; Chen M; Muhammad P; Zhou Y; Cao J; Ahmed SA; Xu J; Xia X; Chen H; Wang K
    Anal Chem; 2017 Feb; 89(4):2522-2530. PubMed ID: 28193002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation.
    Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S
    Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.
    Qian XM; Nie SM
    Chem Soc Rev; 2008 May; 37(5):912-20. PubMed ID: 18443676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-based SERS technology monitoring the chemical reactivity on an α-synuclein-mediated two-dimensional array of gold nanoparticles.
    Lee D; Choe YJ; Lee M; Jeong DH; Paik SR
    Langmuir; 2011 Nov; 27(21):12782-7. PubMed ID: 21942274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX; Li JF; Wu DY; Yang ZL; Ren B; Hu JW; Chow YL; Tian ZQ
    Chem Commun (Camb); 2007 Nov; (44):4608-10. PubMed ID: 17989807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes.
    Li T; Liu D; Wang Z
    Biosens Bioelectron; 2009 Jul; 24(11):3335-9. PubMed ID: 19464160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries.
    Khaing Oo MK; Guo Y; Reddy K; Liu J; Fan X
    Anal Chem; 2012 Apr; 84(7):3376-81. PubMed ID: 22413933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles.
    Krpetić Z; Guerrini L; Larmour IA; Reglinski J; Faulds K; Graham D
    Small; 2012 Mar; 8(5):707-14. PubMed ID: 22223552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-enhanced Raman spectroscopic detection of Bacillus subtilis spores using gold nanoparticle based substrates.
    Cheng HW; Chen YY; Lin XX; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chim Acta; 2011 Nov; 707(1-2):155-63. PubMed ID: 22027133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D; Kang T; Cho H; Choi Y; Lee LP
    Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy.
    Li P; Li P; Tan X; Wang J; Zhang Y; Han H; Yang L
    Anal Bioanal Chem; 2020 May; 412(12):2863-2871. PubMed ID: 32112131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles.
    Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC
    Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.