These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21744683)

  • 1. Near field enhancement for THz switching and THz nonlinear spectroscopy applications.
    Merbold H; Brunner F; Cannizzo A; Feurer T
    Chimia (Aarau); 2011; 65(5):316-9. PubMed ID: 21744683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second harmonic generation based on strong field enhancement in nanostructured THz materials.
    Merbold H; Bitzer A; Feurer T
    Opt Express; 2011 Apr; 19(8):7262-73. PubMed ID: 21503037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Nanopillar-Based Split Ring Resonators for Displacement Current Mediated Resonances in Terahertz Metamaterials.
    Liu C; Schauff J; Lee S; Cho JH
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast and Low-Threshold THz Mode Switching of Two-Dimensional Nonlinear Metamaterials.
    Kang BJ; Rohrbach D; Brunner FDJ; Bagiante S; Sigg H; Feurer T
    Nano Lett; 2022 Mar; 22(5):2016-2022. PubMed ID: 35133848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps.
    Bagiante S; Enderli F; Fabiańska J; Sigg H; Feurer T
    Sci Rep; 2015 Jan; 5():8051. PubMed ID: 25623373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of resonant field enhancement by plasmonic lattice coupling in metallic slit arrays.
    Klarskov P; Tarekegne AT; Iwaszczuk K; Zhang XC; Jepsen PU
    Sci Rep; 2016 Nov; 6():37738. PubMed ID: 27886232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-gap individual and coupled split-ring resonator structures.
    Penciu RS; Aydin K; Kafesaki M; Koschny T; Ozbay E; Economou EN; Soukoulis CM
    Opt Express; 2008 Oct; 16(22):18131-44. PubMed ID: 18958091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband THz Absorption of Microbolometer Array Integrated with Split-Ring Resonators.
    Fan S; Gou J; Niu Q; Xie Z; Wang J
    Nanoscale Res Lett; 2020 Dec; 15(1):223. PubMed ID: 33270179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Field Chipless Radio-Frequency Identification (RFID) Sensing and Identification System with Switching Reading.
    Paredes F; Herrojo C; Mata-Contreras J; Moras M; Núñez A; Ramon E; Martín F
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators.
    Seliuta D; Šlekas G; Vaitkūnas A; Kancleris Ž; Valušis G
    Opt Express; 2017 Oct; 25(21):25113-25124. PubMed ID: 29041183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband terahertz generation from metamaterials.
    Luo L; Chatzakis I; Wang J; Niesler FB; Wegener M; Koschny T; Soukoulis CM
    Nat Commun; 2014; 5():3055. PubMed ID: 24402324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband THz amplification and superradiant spontaneous emission in a guided FEL.
    Snively EC; Xiong J; Musumeci P; Gover A
    Opt Express; 2019 Jul; 27(15):20221-20230. PubMed ID: 31510120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant terahertz probes for near-field scattering microscopy.
    Siday T; Natrella M; Wu J; Liu H; Mitrofanov O
    Opt Express; 2017 Oct; 25(22):27874-27885. PubMed ID: 29092256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator.
    Sinha R; Karabiyik M; Al-Amin C; Vabbina PK; Güney DÖ; Pala N
    Sci Rep; 2015 Mar; 5():9422. PubMed ID: 25800287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz electromagnetic signal enhancement in split ring resonators featuring waveguide modes.
    Ren Y; Wang X; Xiao C
    Opt Express; 2023 Feb; 31(5):8081-8097. PubMed ID: 36859925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs.
    Fan K; Hwang HY; Liu M; Strikwerda AC; Sternbach A; Zhang J; Zhao X; Zhang X; Nelson KA; Averitt RD
    Phys Rev Lett; 2013 May; 110(21):217404. PubMed ID: 23745933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.