These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21744799)
1. Wulff construction for alloy nanoparticles. Ringe E; Van Duyne RP; Marks LD Nano Lett; 2011 Aug; 11(8):3399-403. PubMed ID: 21744799 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle shapes by using Wulff constructions and first-principles calculations. Barmparis GD; Lodziana Z; Lopez N; Remediakis IN Beilstein J Nanotechnol; 2015; 6():361-8. PubMed ID: 25821675 [TBL] [Abstract][Full Text] [Related]
3. Shape-Dependent Single-Electron Levels for Au Nanoparticles. Barmparis GD; Kopidakis G; Remediakis IN Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773426 [TBL] [Abstract][Full Text] [Related]
4. Shape Evolution of Metal Nanoparticles in Water Vapor Environment. Zhu B; Xu Z; Wang C; Gao Y Nano Lett; 2016 Apr; 16(4):2628-32. PubMed ID: 26985595 [TBL] [Abstract][Full Text] [Related]
5. Approaches to modelling the shape of nanocrystals. Boukouvala C; Daniel J; Ringe E Nano Converg; 2021 Sep; 8(1):26. PubMed ID: 34499259 [TBL] [Abstract][Full Text] [Related]
6. NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Chatzigoulas A; Karathanou K; Dellis D; Cournia Z J Chem Inf Model; 2018 Dec; 58(12):2380-2386. PubMed ID: 30351055 [TBL] [Abstract][Full Text] [Related]
7. An aggregative growth process for controlling size, shape and composition of metal, alloy and core-shell nanoparticles toward desired bioapplications. Cheng HW; Luo J; Zhong CJ J Mater Chem B; 2014 Oct; 2(40):6904-6916. PubMed ID: 32262099 [TBL] [Abstract][Full Text] [Related]
8. Stacking principle and magic sizes of transition metal nanoclusters based on generalized Wulff construction. Li SF; Zhao XJ; Xu XS; Gao YF; Zhang Z Phys Rev Lett; 2013 Sep; 111(11):115501. PubMed ID: 24074104 [TBL] [Abstract][Full Text] [Related]
9. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticles. Cui C; Gan L; Neumann M; Heggen M; Cuenya BR; Strasser P J Am Chem Soc; 2014 Apr; 136(13):4813-6. PubMed ID: 24592858 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics of heterogeneous crystal nucleation in contact and immersion modes. Djikaev YS; Ruckenstein E J Phys Chem A; 2008 Nov; 112(46):11677-87. PubMed ID: 18925734 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation. Suleiman IA; Radny MW; Gladys MJ; Smith PV; Mackie JC; Kennedy EM; Dlugogorski BZ Phys Chem Chem Phys; 2015 Mar; 17(10):7038-45. PubMed ID: 25687716 [TBL] [Abstract][Full Text] [Related]
12. Electrum, the Gold-Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules. Guisbiers G; Mendoza-Cruz R; Bazán-Díaz L; Velázquez-Salazar JJ; Mendoza-Perez R; Robledo-Torres JA; Rodriguez-Lopez JL; Montejano-Carrizales JM; Whetten RL; José-Yacamán M ACS Nano; 2016 Jan; 10(1):188-98. PubMed ID: 26605557 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. Jun YS; Kim D; Neil CW Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685 [TBL] [Abstract][Full Text] [Related]
14. Discrete dipole approximation analysis of plasmonic core/alloy nanoparticles. Wu W; Maye MM Chemphyschem; 2014 Aug; 15(12):2582-7. PubMed ID: 24889191 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time. Pandey P; Kunwar S; Sui M; Bastola S; Lee J PLoS One; 2017; 12(12):e0189823. PubMed ID: 29253017 [TBL] [Abstract][Full Text] [Related]
16. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Zhan W; Wang J; Wang H; Zhang J; Liu X; Zhang P; Chi M; Guo Y; Guo Y; Lu G; Sun S; Dai S; Zhu H J Am Chem Soc; 2017 Jul; 139(26):8846-8854. PubMed ID: 28587462 [TBL] [Abstract][Full Text] [Related]
17. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. Jinnouchi R; Asahi R J Phys Chem Lett; 2017 Sep; 8(17):4279-4283. PubMed ID: 28837771 [TBL] [Abstract][Full Text] [Related]
18. Nucleation-Controlled Plasticity of Metallic Nanowires and Nanoparticles. Mordehai D; David O; Kositski R Adv Mater; 2018 Oct; 30(41):e1706710. PubMed ID: 29962014 [TBL] [Abstract][Full Text] [Related]
19. First-principles investigation of electrochemical dissolution of Pt nanoparticles and kinetic simulation. Zhu J; Hu S; Zeng Z; Li WX J Chem Phys; 2019 Dec; 151(23):234711. PubMed ID: 31864240 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. Zhou X; Xu W; Liu G; Panda D; Chen P J Am Chem Soc; 2010 Jan; 132(1):138-46. PubMed ID: 19968305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]